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Programming must be…

“If debugging is the process of 

removing software bugs, then 

programming must be the process 

of putting them in.”
1972 ACM A.M. Turing Award 

winner Edsger W. Dijkstra.
Photo Credit: The University 

of Texas at Austin#1 Rule in cybersecurity: “Treat Everything Like It's Vulnerable”
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Our Goal: Feed the Good Wolf
• Minimize the time between 

vulnerability discovery and mitigation 
by linking vulnerabilities to mitigation 
actions

• Enhance threat intelligence and 
exploratory research

• Eg., The “Log4Shell” flaw was widely 
exploited -- ~40,000 attempted attacks 
within two hours of it becoming public, 
and >830,000 attempts within the first 
three days.*

Image source: https://theevidenceisplain.blogspot.com/2014/07/a-tale-of-two-wolves-battle-between.html 

* https://www.checkpoint.com/cyber-
hub/cyber-security/what-is-
cybersecurity/biggest-cybersecurity-
challenges-in-2022/ 

https://theevidenceisplain.blogspot.com/2014/07/a-tale-of-two-wolves-battle-between.html
https://www.checkpoint.com/cyber-hub/cyber-security/what-is-cybersecurity/biggest-cybersecurity-challenges-in-2022/
https://www.checkpoint.com/cyber-hub/cyber-security/what-is-cybersecurity/biggest-cybersecurity-challenges-in-2022/
https://www.checkpoint.com/cyber-hub/cyber-security/what-is-cybersecurity/biggest-cybersecurity-challenges-in-2022/
https://www.checkpoint.com/cyber-hub/cyber-security/what-is-cybersecurity/biggest-cybersecurity-challenges-in-2022/
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Security by the Analytic
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1. Data & Problem Setting

1
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Common Weakness Enumeration (CWE)
A blueprint for understanding software flaws and their impact through a 
hierarchically designed dictionary of software weaknesses (934 Weaknesses)

Title Suppressed Due to Excessive Length 3

This low-level and product-oriented information demonstrates the exploitation
of SQL injection to compromise the system. However, it does not adequately
specify the characteristic of the SQL injection that is necessary to find and of-
fer potential mitigation or detection methods. The complementary associated
CWE (CWE-89: SQL Injection)1 provides a high-level and beyond-the-product
knowledge by answering three key questions: (1) why the attack is exploited:
the system does not or incorrectly neutralized special elements, (2) how this is
exploited: by modifying the intended SQL command, and (3) what the possible
consequences are: read or modify application data, and bypass protection mech-

anism. This example is confirmatory evidence that a CWE can paint a clear
picture of the existing holes in the systems and reveals potential factors that
cause vulnerability exploitation. Obtaining these factors closely associated with
the paradigm of pinpointing applicable mitigation or detection methods. For ex-
ample, we can apply an ”accept known good” input validation strategy, i.e., using
a set of legit inputs that strictly conform to specifications and rejects the rest, to
mitigate SQL injection. Besides, we can detect SQL injection by performing the
automated static analysis (e.g., bytecode or binary weakness analysis), dynamic
analysis (e.g., database or web service scanners), or design review (e.g., formal
methods). Fig. 1 shows the hierarchical representation of CWEs. Analyzing the

Fig. 1: It depicts the hierarchical representation of the CWEs. The red boxes
show the CWE-89’s relatives in the higher levels. This hierarchy plays an im-
portant role in understanding the character of the weaknesses from di↵erent
levels.

path from the root all the way to any node in the lower levels is indispens-
able since each node reveals di↵erent functional directions to learn a weakness.
For example, by keep tracking of the path from the root node, CWE-707, to

1 https://cwe.mitre.org/data/definitions/89.html

https://cwe.mitre.org 

https://cwe.mitre.org/
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Common Vulnerabilities & Exposures (CVE)
• Bugs: Mistakes happen in the process of building and coding a system 
• Vulnerabilities: Bugs that can be exploited to induce unintended behavior from 

software/protocol/hardware
• A bug is determined to be a vulnerability is registered by MITRE as a CVE

§ Publicly known information-security vulnerabilities and exposures
§ TOTAL CVE Records: 215,715. (https://cve.mitre.org/) on 10/31/2023 

• Some Examples: 
§ Broken Authentication
§ SQL Injection
§ Cross-Site Scripting

Example description: “CVE-2004-0366: SQL injection vulnerability in the libpam-pgsql library 
before 0.5.2 allows attackers to execute arbitrary SQL statements.”

330 CVE Numbering Authorities

https://cve.mitre.org/
https://www.cve.org/ProgramOrganization/CNAs
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Mapping CVEs to CWEs
• CVE reports are uniquely identified computer security vulnerabilities, where a vulnerability is 

defined as a set of one or more weaknesses in a specific product or protocol that allows an attacker 
to exploit the behaviors or resources to compromise a system

• Example: “CVE-2004-0366: SQL injection vulnerability in the libpam-pgsql library before 0.5.2 
allows attackers to execute arbitrary SQL statements.”

https://cve.mitre.org 

“CVE-2004-0366: SQL injection 
vulnerability in the libpam-pgsql library 
before 0.5.2 allows attackers to execute 
arbitrary SQL statements.”

Title Suppressed Due to Excessive Length 3

This low-level and product-oriented information demonstrates the exploitation
of SQL injection to compromise the system. However, it does not adequately
specify the characteristic of the SQL injection that is necessary to find and of-
fer potential mitigation or detection methods. The complementary associated
CWE (CWE-89: SQL Injection)1 provides a high-level and beyond-the-product
knowledge by answering three key questions: (1) why the attack is exploited:
the system does not or incorrectly neutralized special elements, (2) how this is
exploited: by modifying the intended SQL command, and (3) what the possible
consequences are: read or modify application data, and bypass protection mech-

anism. This example is confirmatory evidence that a CWE can paint a clear
picture of the existing holes in the systems and reveals potential factors that
cause vulnerability exploitation. Obtaining these factors closely associated with
the paradigm of pinpointing applicable mitigation or detection methods. For ex-
ample, we can apply an ”accept known good” input validation strategy, i.e., using
a set of legit inputs that strictly conform to specifications and rejects the rest, to
mitigate SQL injection. Besides, we can detect SQL injection by performing the
automated static analysis (e.g., bytecode or binary weakness analysis), dynamic
analysis (e.g., database or web service scanners), or design review (e.g., formal
methods). Fig. 1 shows the hierarchical representation of CWEs. Analyzing the

Fig. 1: It depicts the hierarchical representation of the CWEs. The red boxes
show the CWE-89’s relatives in the higher levels. This hierarchy plays an im-
portant role in understanding the character of the weaknesses from di↵erent
levels.

path from the root all the way to any node in the lower levels is indispens-
able since each node reveals di↵erent functional directions to learn a weakness.
For example, by keep tracking of the path from the root node, CWE-707, to

1 https://cwe.mitre.org/data/definitions/89.html

https://cve.mitre.org/


o We considered 933 CWE classes from MITRE (circa 2021)
o About 124 types of CWEs are classified in National Vulnerability Dataset (NVD)
o CVE to CWE mapping is done manually, requires human expertise, and error prone
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CVE to CWE Mapping
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Figure 3: Partial hierarchy of CWE extracted from MITRE to demonstrate how precise and relaxed prediction is performed.

weighted) to match the number of negative links to prevent bias.
The Adamw [10] optimizer is used with a learning rate of 24�5,
and with warm-up steps of 10% of the total training instances. For
training the V2W�BERT algorithm, we used two Tesla P100-PCIE-
16GB GPUs and 20 CPUs. V2W�BERT processes about 5 links for
a mini-batch of 32 CVEs. For optimization, we compute the pooled
representation of the CVE and CWE mini-batches separately, and
combine them later as per training links (% , # ). For each con�gura-
tion, the experiments were repeated �ve times and the results were
averaged. The method with the best performance is highlighted in
bold in the Tables.

Evaluation Process
The 124 CWEs are distributed in three levels in the MITRE hier-
archy, and the CWEs that each CVE belongs to are predicted at
each level down the hierarchy. There are 34 �rst-level CWEs, and
each class has three child CWEs on an average, with a maximum
of nine. At the second level, each CWE has an average of three
child CWEs and a maximum of �ve. A few examples are provided
in Figure 3. When reporting performance, we take di�erent top :8
values of CWEs from each level. The choice (:1 = 1,:2 = 1,:3 = 1)
gives precise prediction with only one path in the hierarchy. With
moderate precision (:1 = 3,:2 = 2,:3 = 1), there are at most six
possible paths. Finally, a more relaxed prediction can be obtained
with (:1 = 5,:2 = 2,:3 = 2), with at most twenty paths. If the true
CWE(s) are present along the predicted paths, the prediction is con-
sidered to be accurate. Additionally we use the �1-score of correctly
classi�ed links to evaluate the link prediction performance. Table 1
lists the key notations used in the section.

Table 1: Key notations used in the section
Notation Meaning
BERTBASE Original pre-trained BERT model [7]
BERTCVE Additional pre-training with CVE/CWE descriptions
LP Link Prediction component only
LP+RD Link Prediction coupled with Reconstruction Decoder
V2W�BERT LP+RD, with BERTCVE
> = CVEs from CWEs with more than = training instances
[=1,=2] CVEs from CWEs with training instances between =1 to =2
(:1,:2,:3) Top :1,:2,:3 predictions for the :8 -th level in the hierarchy
Test 1 Test instances from 2018 (near-future)
Test 2 Test instances from 2019-2020 (far-future)
Link Formulated as link prediction problem
Class Formulated as classi�cation problem

4.2 Ablation Study
We evaluate each component of the V2W�BERT framework to

�nd the best con�guration for solving the problem. Additionally,
we show how preserving the pre-trained BERT context using Re-
construction Decoder (RD) improves classi�cation performance in
rare and unseen cases. The temporal partition of the dataset is used
for evaluation.

Pooling and Combine Operations
Experimental results show that MEAN-Pooling works best among
the CLS, MEAN, and MAX pooling operations. When combining the
vector representations of a CVE and CWE, concatenation of the
absolute di�erence and multiplication ( |x2E4 � y2F4 |, x2E4 ⇥ y2F4 )
performs best, and these two operations are used for further experi-
mentation. Due to page limitations, comparative details of di�erent
combination and pooling operations are given in Appendix A.2
and A.3 respectively.

Unsupervised Pre-training and Reconstruction Decoder
To highlight the contribution of each component, we train V2W�
BERT using only Link Prediction (LP) module with BERTBASE as a
pre-trained model. This establishes our baseline for comparing the
performance of additional pre-training and Reconstruction Decoder
(RD). Next, we �ne-tune BERTBASE with all labeled and unlabeled
CVE/CWE descriptions in the training years and train LP using this
updated model. We refer this updated BERT model as BERTCVE.
Finally, we have a third experiment that uses LP and RD together
using BERTCVE as a pre-trained model.

Fig 4 shows precise and relaxed prediction accuracy of cases
mentioned above. The use of BERTCVE outperforms BERTBASE in
both the near and far future as learned cyber-security contexts help
to transfer domain knowledge better. The addition of the Recon-
struction Decoder (RD) component helps preserve the context of
BERTCVE, which improves performance in classifying CVEs of rare
and unknown CWE classes, thus improving overall performance.
Test 2 has a lower accuracy than Test 1 as we predict two years into
the future, containing di�erent descriptions’ style. Appendix A.4
shows the quantitative details of these experiments.
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Figure 4: Precise and relaxed prediction accuracy for di�er-
ent components of V2W�BERT. Le�: All data. Right: CVEs
with unseen (zero-shot) CWEs.

Reconstruction Decoder for Few/Zero-shot Learning
The Reconstruction Decoder (RD) component helps preserve the
context of BERTCVE, which improves performance in classifying
CVEs of rare and unknown CWE classes. We evaluate LP with and
without the RD to highlight the improvement. We consider the
CVEs of CWEs that appear in the test set but not in the training

7

Partial hierarchy of CWE extracted from MITRE to demonstrate how precise 
and relaxed predictions are performed. We consider 124 CWEs that are 

distributed in three levels in the hierarchy, with 34 in the first level, 78 in the 
second level, and 16 in the third level. 
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CVE to CWE Mapping: Challenges

• Distribution of the number of 
CVEs per CWE in NVD, 
bucketed into four categories

• Data partitioned into two time 
periods to simulate testing for 
CVEs observed in the future

• 1999-2017 (used for training) 
and 2018-2020 (used for 
testing).
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Common Attack Pattern Enumeration 
and Classification (CAPEC)
• An “exploit” makes a “weakness” a “vulnerability”
• "Attack Patterns" are descriptions of the common attributes 

and approaches employed by adversaries to exploit known 
weaknesses in cyber-enabled capabilities

• CAPEC is a dictionary of common identifiers for attack 
patterns

https://capec.mitre.org/ 

https://capec.mitre.org/
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Mapping CVE to CWE to CAPEC
• We want to know what attack sequences can be taken taken given CVE 

descriptions
• CVE-CWE mapping  ---- CWE-CAPEC mapping

https://cve.mitre.org 

“CVE-2004-0366: SQL 
injection vulnerability in the 
libpam-pgsql library before 
0.5.2 allows attackers to 
execute arbitrary SQL 
statements.”

Title Suppressed Due to Excessive Length 3

This low-level and product-oriented information demonstrates the exploitation
of SQL injection to compromise the system. However, it does not adequately
specify the characteristic of the SQL injection that is necessary to find and of-
fer potential mitigation or detection methods. The complementary associated
CWE (CWE-89: SQL Injection)1 provides a high-level and beyond-the-product
knowledge by answering three key questions: (1) why the attack is exploited:
the system does not or incorrectly neutralized special elements, (2) how this is
exploited: by modifying the intended SQL command, and (3) what the possible
consequences are: read or modify application data, and bypass protection mech-

anism. This example is confirmatory evidence that a CWE can paint a clear
picture of the existing holes in the systems and reveals potential factors that
cause vulnerability exploitation. Obtaining these factors closely associated with
the paradigm of pinpointing applicable mitigation or detection methods. For ex-
ample, we can apply an ”accept known good” input validation strategy, i.e., using
a set of legit inputs that strictly conform to specifications and rejects the rest, to
mitigate SQL injection. Besides, we can detect SQL injection by performing the
automated static analysis (e.g., bytecode or binary weakness analysis), dynamic
analysis (e.g., database or web service scanners), or design review (e.g., formal
methods). Fig. 1 shows the hierarchical representation of CWEs. Analyzing the

Fig. 1: It depicts the hierarchical representation of the CWEs. The red boxes
show the CWE-89’s relatives in the higher levels. This hierarchy plays an im-
portant role in understanding the character of the weaknesses from di↵erent
levels.

path from the root all the way to any node in the lower levels is indispens-
able since each node reveals di↵erent functional directions to learn a weakness.
For example, by keep tracking of the path from the root node, CWE-707, to

1 https://cwe.mitre.org/data/definitions/89.html

https://cwe.mitre.org/
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Adversarial Tactics, Techniques & 
Common Knowledge (ATT&CK)

• Describes operational phases 
in adversary’s lifecycle (e.g., 
Persistence, Lateral 
Movement, Exfiltration)

• Details specific tactics, 
techniques, and procedures 
(TTPs) used in advanced 
persistent threats (APT)

• Attack patterns enumerated 
by CAPECs are used in 
specific ATT&CK  techniques

Tactics

Te
ch

ni
qu

es
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Problem Setting: Summary

• Specific
• >200k

CVE

• Abstract
• ~1k

CWE
• Abstract
• ~600

CAPEC

• Specific
• 196 tech.; 

411 sub

ATT&CK
CVSS

Abstract/GeneralizationSpecific Specific
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2. Approach: V2W-BERT & VWC-MAP

1

2
3
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Key Ideas
“You shall know a word by the company it keeps”                                                                          

– Firth (1957)

• Meaning ≈ Location in semantic space
§ Latent Semantic Analysis (LSA) – state-of-the-art

ü Vector Based on SVD of Word by Document Matrix

From “Attention is all you need” paper by 
Vaswani, et al., 2017

Source: http://jalammar.github.io/illustrated-word2vec/ 
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CVE-CWE: V2W-BERT Framework
• The Transformer component 

including the Reconstruction-Decoder 
(RD) is highlighted in pink, and the 
Link Prediction (LP) component is 
highlighted in blue 

• Pre-training is done only on the 
Masked Language Model, and during 
link prediction the entire framework is 
considered

• Learnable function:

Architectural overview of V2W-BERT framework 
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Figure 2: Architectural overview of V2W�BERT+ framework. The Transformer component including the Reconstruction
Decoder (RD) is highlighted in red, and the Link Prediction (LP) component is highlighted in blue. The pre-training is done
only on the Masked Language Model (highlighted in gray) and during link prediction the entire framework is considered.

layer has output neurons of the size of vocabulary used by the
respective tokenizer of the models. Some of the input tokens are
randomly masked during feedforward, and the model tries to pre-
dict them. Throughout the training process, the model learns the
sentence structure in cybersecurity domain (represented by CVE
corpus) and avoids focusing on speci�c keywords. The MLM can
utilize 47% of the CVE descriptions that are not labeled, and this
self-supervised [31] pre-training mode can bene�t from that data.
We use multiple transformer models in V2W�BERT+ : BERT [7],
RoBERTa [13], and DistilBERT [27]). We use the corresponding spe-
ci�c Mask Language Head for each model. Instead of pre-training
from scratch, we take models that are already pre-trained in the
natural language domain (e.g., Wikipedia, BooksCorpus, CC News)
and transfer that knowledge to the cyber-security domain to accel-
erate the learning process. Although we use pre-trained models,
we refer this step as pre-training of V2W�BERT+ since the corpus
is used in an self-supervised fashion without using any labeled
information.

4.2 Fine-tuning for Link Prediction
In the link prediction step, the input CVE text descriptions are

passed through the Transformer models and we get vector represen-
tations for each of the tokens in the sentences. During tokenization,
the �rst token is always added as [CLS], and the end of a sentence
is represented with [SEP]. The �nal hidden state corresponding
to the [CLS] token usually represents the whole sequence as an
aggregated representation. Depending on the model and task, di�er-
ent pooling operations can be devised. For example, mean pooling
operators take the average vector representation of all tokens and
may outperform [CLS]-pooling in speci�c tasks. Typically, these

pooled representations are forwarded to a linear transformation
layer followed by a dropout layer [28].

The Transformer model takes both CVE and CWE input descrip-
tions, and through the pooler, we get an individual vector repre-
sentation for a CVE and a CWE. The representations are combined
using appropriate combination operators and passed to the link
classi�er. By default, concatenation of |x2E4 �y2F4 | and x2E4 ⇤y2F4
is used for this work and found to be best performing [6].

The link classi�er contains custom NN layers to take the com-
bined representation and returns prediction with two-dimensional
outputs. This output vector of a CVE-CWE input pair represents
the unlink-link prediction con�dence.

While processing the CVE-CWE description for pooled repre-
sentation, the same pre-trained Masked Language Head is also
considered to ensure that the learned context remains preserved.
Therefore, during the training process of the link prediction, masked
tokens are used. The input token masking makes the model more
robust since it learns to focus on multiple keywords of a sentence.
It is also useful for the zero-shot case since the unlabeled pre-
trained textual context is preserved during the training process.
Thus, CVEs of unforeseen CWE class can have links if they have
contextual/textual similarities between them.

For a CVE and CWE description pair, the overall loss to optimize
can be expressed as:

; = U1!%; (2E4, 2F4) + U2'⇡; (2E4) + U3'⇡; (2F4), (2)

where !%; (2E4, 2F4) is the cross-entropy loss of link classi�er be-
tween CVE and a CWE. Masked Language Head loss is represented
as '⇡; (2E4) and '⇡; (2F4), for the CVE and the CWE, respectively.
The parameters, U1,U2,U3, are set to 1 by default and can be adapted
to emphasize di�erent objectives.

4

S Das, E. Serra, M. Halappanavar, A. Pothen, and E. Al-Shaer. "V2W-
BERT: A Framework for Effective Hierarchical Multiclass Classification 
of  Software Vulnerabilities." In proceedings of  the 8th IEEE 
International Conference on Data Science and Advanced Analytics (DSAA). 
Porto, Portugal. October 2021. [Best Application Paper Award] 

formulates the problem as a link prediction problem using
Transformers. Recent work by Aota et al. [11] uses Random
Forest and a new feature selection based method to classify
CVEs to CWEs. This work only uses the 19 most frequent
CWE definitions and ignores CWEs with fewer than 100
instances, achieving an F1-Score of 92.93% for classification.
Further, it does not support multi-label classification and does
not consider the hierarchical relationships within CWEs. All
these limitations are addressed in our work.

Na et al. [10] predict CWEs from CVE descriptions using
a Naı̈ve Bayes classifier. They focused only on the most
frequent 2-10 CWEs without considering the hierarchy. When
the number of CWEs considered increases from 2 to 10, their
accuracy drops from 99.8% to 75.5%. Rahman et al. [13] use
Term Frequency-Inverse Document Frequency (TF-IDF) based
feature vector and Support Vector Machine (SVM) technique
to map CVEs to CWEs. They use only 6 CWE classes and
427 CVEs without considering the CWE hierarchy.

Recent work by Aghaei et al. [14] uses TF-IDF weights of
the vulnerabilities to initialize single layer Neural Networks
(NNs). They use the CWE hierarchy to predict classes iter-
atively. However, this is a shallow NN with only one layer,
and comparative performance with more complex networks is
not discussed in their work. Further, they consider all classes
with scores higher than a given threshold as a prediction.
This approach decreases the precision of prediction and is less
desirable when higher precision is needed, a limitation that is
addressed in our work. Depending on the level of hierarchy,
they achieve 92% and 94% accuracy for a random partition
of the dataset. In contrast, we study a more representative
partition of data based on time.

We note that each study uses different sets of CVEs for
learning and testing. The choice of the number of CWEs used
and evaluation methods are also different. Therefore, there is
no consistent way to compare the accuracy numbers presented
by different authors. Some studies use CVE descriptions to
perform fundamentally different tasks than mapping to CWEs.
For example, Han et el.[15] and Nakagawa et al. [16] use
word2vec for word embedding and a Convolutional Neural
Network (CNN) to predict the severity of a vulnerability
(score from 0 to 10). Neuhaus et al. [12] use Latent Dirichlet
Allocation (LDA) to analyze the CVE descriptions and assign
reports on 28 topics.

To the best of our knowledge, CBERT is the first BERT [6]
based method to classify CVEs to CWEs. We fine-tune
the pre-trained BERT model with CVE and CWE descrip-
tions, and then learn a function F✓ (Equation 1), using a
Siamese network incorporating BERT. A Siamese network
shares weights while working in tandem on two different
inputs to compute comparable outputs. A few recent studies
have used the Siamese BERT architecture for information
retrieval and sentence embedding tasks [17, 18]. Reimers et
al. [17] proposed Sentence-BERT (SBERT), which uses a
Siamese and triplet network for sentence pair regression and
achieves the state-of-the-art performance in Semantic Textual
Similarity (STS) [19]. CBERT is conceptually similar to
SBERT, but with notable differences. CBERT has a different

architecture where Reconstruction Decoder is coupled with the
Siamese network to preserve context to improve performance
in classifying rare and unseen vulnerabilities. Also CBERT
is designed to classify CVEs into CWEs hierarchically, i.e., it
has significantly different training and optimization processes.

IV. PROBLEM FORMULATION

The Common Vulnerabilities and Exposures (CVEs) reports
comprise the input text data, and the Common Weakness
Enumerations (CWEs) are the target classes. The CWEs
have textual details (Name, Description, Extended Description,
Consequences, etc.), which are ignored in classification based
methods. To utilize CWE descriptions and make the model
flexible, we convert this multi-class multi-label problem into
a binary link prediction problem. We propose a function, F✓,
that takes a CVE-CWE description pair (v, w) and returns a
confidence value measuring their association:

l = F✓(v, w). (1)

Here F✓ is a learnable function and the vector ✓ denotes
learnable parameters. If a particular CVE (v) is associated
with a CWE (w), then the function F✓ returns a value l ⇡ 1;
and, l ⇡ 0 otherwise. To learn ✓, both positive and negative
links from the known associations are used. If a CVE has a
known mapping to some CWE in the hierarchy, we consider all
associations between them and their ancestors as positive links.
The rest of the CVE-CWE associations are negative links. To
predict the CWEs associated with a CVE report, we find the
link with the highest confidence value in the hierarchy, from
the root to a leaf node, using F✓. The function F✓ also helps to
easily incorporate new CWE definitions into the classification
model.

V. A NOVEL FRAMEWORK: V2W-BERT

In this section we present a novel framework V2W-BERT
to classify CVEs to CWEs hierarchically. V2W-BERT opti-
mizes the learnable parameters ✓ of F✓ (§IV) in two steps.
In the first step, the pre-trained BERT language model is
further fine-tuned with CVE/CWE descriptions specific to
cyber security. In the second step, the trained BERT model
is employed in a Siamese network architecture to establish
links between CVEs and CWEs. The architecture takes a
specific CVE-CWE pair as input, and predicts whether the
CVE is mapped to the CWE or not, along with a confidence
value. V2W-BERT includes a Mask Language Model (LM)
based Reconstruction Decoder to ensure that the descriptions’
contexts are not changed too much during the training process.

Figure 3 shows the overall architecture of the V2W-BERT
framework. V2W-BERT contains two primary components:
(i) Link Prediction (LP), and (ii) Reconstruction Decoder
(RD). The LP module’s primary purpose is to map CVEs
to CWEs while the RD module preserves the context of the
descriptions of CVEs and CWEs. During the backpropagation
step, the trainable BERT layers are updated while optimizing
LP and RD loss simultaneously. Figure 3 shows a simplified

4
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Implementation details
• Huggingface and PyTorch Lightning : 

§ Huggingface provides a wide range of transformer-based models
§ PyTorch Lightning helps organize and parallelize PyTorch implementations efficiently 

(DP, DDP)

• Step 1: V2W-BERT pretraining with CVE/CWE descriptions
§ Retraining BERT model with domain specific CVE descriptions
§ Take a batch of CVEs and update

• Step 2: V2W-BERT linking CVEs with CWEs
§ Take batch of CVEs,  batch of CWEs, process them parallel
§ Create training links process them parallel
§ Process reconstruction loss of the batch of CVEs and CWEs parallel
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Strong Scaling of V2W-BERT: GPUs vs. #parameters
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A Summary of Key Results

Prediction accuracy in future
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Relative Performance (temporal partition)
Table 5: Performance comparison of V2W�BERT

Model Test 1 (:1,:2,:3) Test 2 (:1,:2,:3)
(1,1,1) (3,2,1) (5,2,2) (1,1,1) (3,2,1) (5,2,2)

1-100

Class, TF-IDF NN 0.2631 0.5656 0.6537 0.2519 0.4838 0.5739
Link, TF-IDF NN 0.3626 0.5998 0.6791 0.3395 0.564 0.659
Class, BERTCVE 0.4138 0.6602 0.7466 0.2914 0.6105 0.6902
Link, V2W�BERT 0.4765 0.6933 0.7564 0.4072 0.6293 0.7179

>100

Class, TF-IDF NN 0.8524 0.9425 0.9616 0.7815 0.8953 0.9404
Link, TF-IDF NN 0.8463 0.9227 0.9485 0.7604 0.8738 0.9153
Class, BERTCVE 0.8852 0.9479 0.9649 0.8067 0.9064 0.9414
Link, V2W�BERT 0.8905 0.947 0.9763 0.8113 0.9123 0.9492

All

Class, TF-IDF NN 0.775 0.893 0.9298 0.6886 0.8231 0.8761
Link, TF-IDF NN 0.7828 0.8803 0.9132 0.6863 0.8196 0.8706
Class, BERTCVE 0.8232 0.9101 0.9363 0.7163 0.8578 0.9038
Link, V2W�BERT 0.8362 0.914 0.9442 0.7345 0.8594 0.9151

F1-Score of predicted links: We evaluate both link and unlink
pairs that are correctly classi�ed. Only the two link-based meth-
ods (V2W�BERT and Link, TF-IDF NN) predict links. V2W�BERT
achieves �1-Scores of 0.93 for Test 1, and 0.92 for Test 2, where as
TF-IDF NN achieves 0.91 and 0.88 respectively (§A.6). Performance
of predicting links is higher than the precise CWE predictions since
predicting a CWE accurately down to the leaf node requires all
links to the ancestor to be correctly predicted.

Zero-shot performance of linkmethods: Table 6 captures clas-
si�cation performance of CVEs associated with CWEs not seen in
training. Only the link-basedmethods are compared since classi�cation-
based approaches do not support this task. The link-based TF-IDF
NN performs worse than random choice since it is over-�tted to
the available training CWEs.

Table 6: Zero-shot accuracy of link-based methods
Model Test 1 (:1,:2,:3), 89 Test 2 (:1,:2,:3), 247

(1,1,1) (3,2,1) (5,2,2) (1,1,1) (3,2,1) (5,2,2)
Random 0.0032 0.0196 0.0653 0.0032 0.0196 0.0653
Link, TF-IDF NN 0.0000 0.1158 0.4875 0.0000 0.0562 0.1717
Link, V2W�BERT 0.2809 0.6954 0.8558 0.1012 0.3475 0.6104

Predicting a new CWE de�nition
For a given CVE, V2W�BERT gives link and unlink values to all
available CWEs. If the link value is higher than unlink, we consider
the CVE to be associated with that CWE. The link value repre-
sents the con�dence about the association of a vulnerability to a
weakness. We can push this con�dence boundary for a more ro-
bust prediction and consider the link only if the value is greater
than a threshold V . For a CVE description, if all link values to the
available CWEs are less than V , then the CVE description has a
di�erent style, or we need a new CWE de�nition. Appendix A.7
shows experimental evidence where we get most occurrences of
all unlinks in the case of unseen CWEs.

5 Summary and Future Work
We presented a Transformer-based framework (V2W�BERT) to

e�ciently map CVEs (speci�c vulnerability reports) to hierarchi-
cally structured CWEs (weakness descriptions). Using data from
standard sources, we demonstrated high quality results that out-
perform previous e�orts. We also demonstrated that our approach
not only performs well for CWE classes with abundant data, but
also for rare CWE classes with little or no data to train. Since
classifying rare CWEs has been an explored problem in literature,
our framework provides a promising novel approach towards a

viable practical solution to e�ciently classify increasing more and
diverse software vulnerabilities. We also demonstrated that our
framework can learn from historic data and predict new informa-
tion that has not been seen before. Our future work will focus on
scaling larger pre-trained BERT models with high-performance
computing platforms to further enhance the classi�cation perfor-
mance, and automated suggestions for de�ning new weaknesses to
match novel vulnerabilities.
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Randomly Partitioned (across years)

set or have few instances. We call these two cases zero-shot and
few-shot, respectively. We use BERTCVE as the pre-trained model
for experimentation.

Zero-shot Performance: We removed all CVEs of the descen-
dants and ancestors of these unseen CWEs from the training process
to avoid any bias for zero-shot evaluation. Table 2 shows that the
addition of Reconstruction Decoder (RD) improves the accuracy for
unseen cases. The precise and relaxed prediction accuracies are eval-
uated for the CWEs that were absent during training. Here, “Test
1 (:1,:2,:3), 89” refers to 89 CVEs instances in year 2018 whose
corresponding CWEs were unavailable during training. The precise
accuracy is relatively low but signi�cantly higher than random
prediction. For relaxed prediction, we get about (86% accuracy for
Test 1 and (61% for Test 2 (illustrated in Figure 4). The performance
of predicting unseen CVEs completely depends on inherent textual
similarities between a CVE and CWE description.

Table 2: Zero-shot accuracy with and without RD

Model Test 1 (:1,:2,:3), 89 Test 2 (:1,:2,:3), 247
(1,1,1) (3,2,1) (5,2,2) (1,1,1) (3,2,1) (5,2,2)

Random 0.0032 0.0196 0.0653 0.0032 0.0196 0.0653
LP 0.1263 0.5454 0.8483 0.0273 0.2568 0.5902
LP+RD 0.2809 0.6954 0.8558 0.1012 0.3475 0.6104

Few-shot Performance: Table 3 shows the performance of CVEs
where the corresponding CWEs have total training instances be-
tween ([=1,=2]). The “Test 1, = = [1, 50], 1057” refers to 1057 test
CVE instances from 2018 whose corresponding CWEs had training
examples between 1 to 50. With addition of RD, the model achieves
signi�cantly higher precise-prediction accuracy than Link Predic-
tion (LP) alone. The model achieves 71%-84% prediction accuracy
in 2018 when we have only 51 � 100 training instances in the past
(1999-2017). This improvement in rare cases is signi�cant compared
to related work, as detailed in §4.3.

Table 3: Few-shot accuracy evaluated for rare CWE classes
with di�erent training instances between [=1,=2]

Model Test 1, n=[1, 50], 1057 Test 2, n=[1, 50], 2632
(:1,:2,:3) (1,1,1) (3,2,1) (5,2,2) (1,1,1) (3,2,1) (5,2,2)

LP 0.2142 0.4991 0.671 0.2462 0.5151 0.6306
LP+RD 0.3199 0.6176 0.705 0.2474 0.5569 0.6736

Test 1, n=[51, 100], 800 Test 2, n=[51, 100], 1221
LP 0.5687 0.8075 0.8400 0.5652 0.7771 0.8054

LP+RD 0.7087 0.8087 0.8375 0.6457 0.7870 0.8035
Test 1, n=[101, 150], 690 Test 2, n=[101, 150], 1643

LP 0.6645 0.8373 0.9097 0.4221 0.6605 0.7639
LP+RD 0.7238 0.8475 0.9222 0.5091 0.6648 0.7849

4.3 Comparison with Related Approaches
We compare the performance of the V2W�BERT framework (us-

ing settings from §4.2) with related work. V2W�BERT is compared
against two classi�cation methods and a link association approach
similar to ours. We compare with two classi�cation approaches,
a TF-IDF based Neural Network (NN) [1] and a �ne-tuned BERT
classi�er (this work). While �ne-tuning the BERT classi�er, we use
the same pre-trained BERTCVE algorithm and MEAN -Pooling as
with V2W�BERT. Custom layers with dropout and fully connected
Neural Networks are added on top of the pooling layer to predict all
usable CWEs. Additionally, we implement a TF-IDF feature-based
link association method to train the model �\ . We use the TF-IDF

feature directly and use the same ( |x2E4 � y2F4 |, x2E4 ⇥ y2F4 ) com-
bination operation and classi�cation layer as we did in V2W�BERT.
The training links are also kept same as V2W�BERT. We highlight
the classi�cation and link prediction based method with pre�x
‘Class’ and ‘Link’ in the table.

Performance in the random partition of the dataset
Table 4 shows the comparative performance of the related methods.
We take 70% of the data for training from each category, 10% for
validation for hyper-parameter settings, and 20% for testing. With
more training data and examples overlapping all years, V2W�BERT
and achieves 89% � 97% precise and relaxed prediction accuracies.

Table 4: Performance with randomly partitioned dataset

Model Test Set (:1,:2,:3)
(1,1,1) (3,2,1) (5,2,2)

Class, TF-IDF NN 0.8606 0.9464 0.9668
Link, TF-IDF NN 0.8642 0.9502 0.9693
Class, BERTCVE 0.8812 0.9503 0.9689
Link, V2W�BERT 0.8916 0.9523 0.9723

Performance in the temporal partition of the dataset
Unlike random partition, where we have taken training examples
from each category, temporal partition is more challenging and
re�ective of the application. Table 5 compares the accuracy of V2W�
BERT trained with data from 1999-2017, and tested for 2018 (Test
1) and 2019-2020 (Test 2). Key results are illustrated in Figure 5. To
highlight the performance of CVEs of rare and frequently occur-
ring CWEs, we split the test sets by CWEs having 1 � 100 training
examples, and by CWEs with more than a hundred training ex-
amples. The V2W�BERT outperforms the competing approaches
in both precise and relaxed predictions, overall as well as in rare
and frequently occurring cases. For CWEs with � 100 training
instances, V2W�BERT achieves 89% � 98% precise and relaxed pre-
diction accuracy in Test 1 (2018). The performance on Test 2 data is
lower than that of Test 1, since the former is further into the future.
To demonstrate sustainability of V2W�BERT, we experimented by
adding recent data (from 2018) for training, and it improves the
performance on Test 2 data (Appendix A.5).
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Figure 5: A summary of the key results for Test 1 (T1) show-
ing superior performance of V2W�BERT with respect to
other approaches, especially for rare CWEs classes. Details
are provided in Table 5.
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CWE-CAPEC: VWC-MAP Framework: 
Approach1: Link prediction

Architectural overview of the Link 
Prediction network. The Feature 
Transformer components have 

shared weights. The model takes 
CWE-CAPEC feature information and 
transforms and combines them for 

prediction 

S. Das, A. Dutta, S. Purohit, E. Serra, M. Halappanavar and A. Pothen, "Towards Automatic Mapping of  Vulnerabilities to Attack Patterns 
using Large Language Models," 2022 IEEE International Symposium on Technologies for Homeland Security (HST), Boston, MA, USA, 2022, pp. 1-7, 
doi: 10.1109/HST56032.2022.10025459. [Best Paper Award in Cyber Security Track] 

among the CWEs and CAPEC definition (§V). To tackle
this we use utilize the provided relations to create negative
examples we are really confident in.

2) Text-to-text: We can formulate the task of mapping
CWE to CAPEC as a text generation problem. Given an
input CWE, the T5 model generates a corresponding CAPEC
description. Unlike link prediction, this text generation-based
approach doesn’t require negative examples and is free from
selection bias. However, it is difficult to incorporate one-to-
many relationships as a CWE can be associated with multiple
CAPECs. To handle it we added extra commands to impose
order among CAPECs such that during inference we can
generate sequentially.

C. Evaluation challenges

Irrespective of the learning methods, the primary challenge
is to evaluate the quality of predictions. The first option
is to keep aside some ground truth associations and try to
predict those during the inference phase. However, as we
have numerous CAPECs, more often we will get related
predictions if not exact and few ground truths are not enough
to evaluate. Additionally, most of the CWE-CAPEC mappings
are incomplete and empty, therefore, we have to resort to
manual inspection to evaluate the quality of the predictions.

IV. PROPOSED METHODS

To map CVEs to CAPECs, in the first phase we get
predictions for CWEs using V2W-BERT [12], and then we
learn extended sets of mapping between CWEs and CAPECs
in the second phase through the proposed methods. Once we
have the complete mapping between CWE and CAPECs, our
overall pipeline of VWC-MAPis complete. We consider two
different methods to cross-examine the quality of mapping for
evaluation and manual inspection.

A. Link Prediction

In this formulation, we converted the mapping task of
CWEs to CAPECs into a binary classification problem. Given
a (CWE description, CAPEC description) pair, we want to
predict if this association is correct or not. To do this we use
a Siamese architecture of a Neural Network where we pass
TF-IDF vectors of the CWEs and CAPECs as input features,
ucwe,vcapec. The feature transformer network (highlighted in
Figure 1) transform these into vectors x, y of new dimension.
Later we combine these vectors using the concatenation of
feature subtraction and multiplication ((x � y)|x ⇥ y) oper-
ation. Finally, we fed the combined representation through a
link classifier network to get a binary prediction about the
associations.

Note that, we could also use BERT [14] or similar pre-
trained language models as Feature Transformer Network.
However, in practice, we have found the basic Neural Network
(NN) model quickly overfits the given data based on a few
keywords and thus it does not provide any extra benefit with
the added complexity of BERT.

CAPEC description, vcapecCWE description, ucwe

Feature
Transformer Network

Pooler, x

Feature
Transformer Network

Pooler, y

Combine, x,y

Link Classifier

Link Prediction (LP)

Hidden State, (H) Hidden State, (H)

x y

Fig. 1: Architectural overview of the Link Prediction network.
The Feature Transformer components have shared weights.
The model takes CWE-CAPEC feature information transform
and combines them for prediction.

Training: To train the link prediction model, we re-
quire positive and negative examples. With 924 CWEs and
546 CAPECs, there could be 504,504 possible associations.
Among them, we consider the given associations (1152) from
MITRE as positive examples. However, for a CWE given
some CAPEC associations, we cannot consider the rest of
the CAPECs as negative examples. For a negative example,
we only consider links that are unrelated and we have some
confidence about them. To do this, first we cluster the CAPECs
based on ‘ChildOf’, ‘CanAlsoBe’ relations. We have found
around 59 unrelated CAPEC clusters. If a CWE is mapped
to two CAPECs from two different clusters, we would only
consider negative examples for CAPECs of the remaining
57 clusters. This indirectly enforces positive bias toward
correlated CAPECs while keeping high confidence in the given
positive examples.

Inference: During inference, for a given CWE we formulate
the CWE-CAPEC description pair and find the link prediction
confidence value. Then either we can select associations with
more than 90% confidence or we can select top k (usually 10)
or a combination of these two.

B. Text-to-text Model
The link prediction performs well but the performance

depends on the quality of negative examples. Additionally,
whether a CWE-CAPEC pair can be mapped or not is decided
through a few keywords since the model overfits fast and the
actual context of the text may not be considered. Instead,
we can use the transfer learning capabilities of the text-to-
text model T5. Given the CWE text description, we want to
generate a CAPEC text description. This task is significantly
more difficult than CWE-CAPEC mapping, as we want to
generate the entire text sequence of CAPEC. Therefore, unlike
link prediction which can make a decision based on a few

3
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CWE-CAPEC: VWC-MAP Framework 
Approach2: Using LLMs (Google T5)

Text-2-Text Mapping: Training process for VWC-MAP framework
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CWE-CAPEC Mapping Result: CWE-131

CWE Link Prediction T5-model
CAPEC Rating CAPEC Rating

CWE-131: Incorrect
Calculation
of Buffer Size

CAPEC-100: Overflow Buffers* 10 CAPEC-100: Overflow Buffers* 10
CAPEC-47: Buffer Overflow via Parameter Expansion* 10 CAPEC-47: Buffer Overflow via Parameter Expansion* 10
CAPEC-14: Client-side Injection-induced Buffer Overflow 8 CAPEC-14: Client-side Injection-induced Buffer Overflow 8
CAPEC-24: Filter Failure through Buffer Overflow 10 CAPEC-24: Filter Failure through Buffer Overflow 10
CAPEC-256: SOAP Array Overflow 10 CAPEC-67: String Format Overflow in syslog() 3
CAPEC-45: Buffer Overflow via Symbolic Links 5 CAPEC-45: Buffer Overflow via Symbolic Links 5
CAPEC-46: Overflow Variables and Tags 10 CAPEC-46: Overflow Variables and Tags 10
CAPEC-8: Buffer Overflow in an API Call 3 CAPEC-8: Buffer Overflow in an API Call 3

* - Ground truth

TABLE I: Predictions from our Link Prediction model for CWE-131. Both models predict the ground truth of two CAPECs
perfectly. The additional predictions were evaluated manually and we have found them to be highly relatable. It’s also interesting
to see both of these give almost same predictions with one difference.

CWE Link Prediction T5-model
CAPEC Rating CAPEC Rating

CWE-22: Improper
Limitation
of a Pathname
to a Restricted
Directory (’Path
Traversal’)

CAPEC-126: Path Traversal* 10 CAPEC-126: Path Traversal*† ⇥
CAPEC-64: Using Slashes and URL Encoding
Combined to Bypass Validation Logic*†

⇥ CAPEC-64: Using Slashes and URL Encoding
Combined to Bypass Validation Logic

10

CAPEC-76 Manipulating Web Input to File System Calls* 10 CAPEC-76: Manipulating Web Input to File System Calls* 10
CAPEC-78: Using Escaped Slashes in Alternate Encoding*† ⇥ CAPEC-78: Using Escaped Slashes in Alternate Encoding 10
CAPEC-79: Using Slashes in Alternate Encoding*† ⇥ CAPEC-79: Using Slashes in Alternate Encoding*† ⇥
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CWE-CAPEC Mapping Result: CWE-22
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3. Insights and Next Steps

1

2

3
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Vulnerability Exploration (http://enigma.pnl.gov:8501/)
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K. Panchal, S. S. Das, L. De La Torre, J. Miller, R. Rallo and M. Halappanavar, "Efficient Clustering of  Software Vulnerabilities using Self  Organizing Map 
(SOM)," 2022 IEEE International Symposium on Technologies for Homeland Security (HST), Boston, MA, USA, 2022, pp. 1-7, doi: 10.1109/HST56032.2022.10025443.
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Case Studies
• Microsoft Office Memory Corruption (CVE 2017-11882):

§ This Microsoft Office software bug allows attackers to execute arbitrary code on the user’s 
system by convincing the user to open a malicious file. It was patched in a later version of 
Office.

§ CWE-119 (from V2W-BERT): Improper Restriction of Operations within the Bounds of a 
Memory Buffer --- The software performs operations on a memory buffer, but it can read from 
or write to a memory location that is outside of the intended boundary of the buffer.

• Citrix Netscaler Directory Traversal (CVE-2019-19781): 
§ An issue was discovered in Citrix Application Delivery Controller (ADC) and Gateway 10.5, 

11.1, 12.0, 12.1, and 13.0. They allow Directory Traversal.
§ CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') The 

software uses external input to construct a pathname that is intended to identify a file or 
directory that is located underneath a restricted parent directory, but the software does not 
properly neutralize special elements within the pathname that can cause the pathname to 
resolve to a location that is outside of the restricted directory

CISA CYBERSECURITY ADVISORY: Top Routinely Exploited Vulnerabilities
August 20, 2021 -- Alert CodeAA21-209A 
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Summary & 
Conclusions
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Summary of Contributions

• First work to provide complete mapping of CVEs to CWEs to 
CAPECs

• Showed how Siamese link predictions and large language models 
can be used for high quality mappings

• Scaled V2W-BERT on several generations of Nvidia systems and a 
GraphCore system

• Classified both frequent and rarely occurring CVEs better than all 
existing approaches

• Classified CVEs while maintaining the hierarchical relationships
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Future Work
• Work with subject matter experts to 

perform validation and verification of 
mappings and clusters 

• Enhance transfer learning techniques to 
classify CVEs/CWEs/CAPECs with 
few/zero training examples

• Build ability to predict if/when new CWE 
definitions are necessary

• Enhance mechanism to incorporate novel 
definitions over time 

• Enhance the demonstration website

The coming tsunami from AI disruptions



Thank you
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Self Organizing Maps (Kohonen Maps)

Source: https://en.wikipedia.org/wiki/Self-
organizing_map 

https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Self-organizing_map


SOM Training: Output from V2W-BERT (~100k CVEs)

• sD = som_read_data('V2W-LINK-distilbert-base-uncased-dp_rep.txt’);
• sD is a struct with 99950×768 elements. 
• sM=som_make(sD,'shape','toroid','mapsize','big','training','long','tracking',0);

• To Create, initialize and train Self-Organizing Map

• sM  struct with fields:
 type: 'som_map'
      codebook: [6417×768 double]
         topol: [1×1 struct]
        labels: {6417×1 cell}
         neigh: 'gaussian'
          mask: [768×1 double]
     trainhist: [1×3 struct]
          name: 'SOM 01-Dec-2021'
    comp_names: {768×1 cell}
     comp_norm: {768×1 cell}
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K-means clustering with K=138
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K-means clustering with Davies-Bouldin 
optimization for selecting best k
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Clusters: CWE label Representation Bar 
chart representation (first 10 clusters)

Two best peak 
(89%)

Best peak (97%)


