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MIT Lincoln Laboratory Supercomputing Center 

*Based on 2020 Top500.org                    
AI Flops = 4x4 matrix multiply half precision in, single precision out (mixed precision training)

• Significant increase in computing power for 
simulation, data analysis, and machine learning

• Critical computing power for simulation, data 
analysis, and machine learning

• Operates on renewable energy

Capability
Processor Intel Xeon & Nvidia Volta

Total Cores 737,000

Peak 7.4 Petaflops

Top500 5.2 Petaflops

Memory 172 Terabytes

Peak AI Flops 100+ Petaflops

Network Link Intel OmniPath 25 GB/s

Low Carbon 
Emission
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Data Centers

1. Train

2. Inference

4. Aggregate

3. Collect

AI Development vs Deployment

Edge Devices and Platforms

Tesla FSD Chip

Steps: 1. Train in corporate data center 3. Collect metrics/data
2. Execute inference on platforms 4. Aggregate metrics/data

0. Algorithm Development

1. Train

2. Inference

4. Aggregate

3. Collect

Edge Devices and Platforms

DoD Data Center

Edge
Computing
(Deployment)

Data-Center
Computing

(Development)

0. DoD Algorithm Development

In
du

st
ry

D
efense
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A Few Trends and Observations

Challenges Trends and Observations

Computing Performance Large number of many-cores; concurrency and locality;
instruction level parallelism | Moore’s law dead: Power and 
memory walls; clock rate limitations

Hardware Platforms Domain Specific Accelerators: Heterogenous edge computing; 
legacy hardware solutions

Power and Energy Unsustainable energy requirements: Power and energy walls; 
growing environmental impact

New Application Areas Unknown requirements: new applications face “new” problems 
(e.g., seamless transition between development and deployment)

Research and 
Development

Education: Lack of trained computing engineers; Research: 
difficult to collect and develop solutions based on real data

Top-level trends: 
• Renewed resurgence of HPC solutions to power AI and research innovations

• Need for “seamless” transition between HPC and Deployment (Edge) environments
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Trend 1: AI Development Computing Requirements Gap

Source: Neil Thompson, MIT CSAIL

Need for tools that bridge computing gap
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Corollary Trend 1: Major Source of Carbon Emissions
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[1] Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. 
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming 
Unsustainable. IEEE Spectrum.

Deep Learning era

Deep learning energy requirements are growing unsustainably

Deep Learning
Requirements

Single Processor 
Performance

[2] The Energy and Carbon Footprint of Training End-to-End Speech Recognizers -
Parcollet, T., & Ravanelli, M., 2021 
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Peak Power (W)

Trend 2: Growing diversity of ML Accelerators
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A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi and J. Kepner, "Survey and Benchmarking of Machine Learning Accelerators," 2019 IEEE High 
Performance Extreme Computing Conference (HPEC), 2019, pp. 1-10. 
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A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi and J. Kepner, ”AI and ML Accelerator Survey and Trends," 2022 IEEE High Performance 
Extreme Computing Conference (HPEC), 2022, pp. 1-10. 
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Trend 3: Emerging Application Domains

Health Care

• Correlate data across millions 
of patients 

• Evidence Based Medicine
• Data from different modalities

• Image
• Video
• Signal
• Text
• ...

IoT/Smart XYZ

• Billions of small “edge” 
connected devices across 
homes, cities, countries, …

• Need to identify patterns of 
living and correlate for 
improved efficiency and 
safety

Retail

• Sell you things better, supply 
chain management, 
inventory management

• Dozens of existing enterprise 
systems connected to 
numerous management 
systems (credit card 
processing, FedEx, ...)

Transportation

• Billions of vehicles
• Need to correlate high rate 

information from different 
vehicles

• More sensors -> More 
problems

• Can be used to improve 
quality of transportation 
systems
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Application Example: Autonomous Vehicles

In-Vehicle data processing
V2V: Vehicle to Vehicle
V2I: Vehicle to Infrastructure

Com = Communication
GPS = Global Positioning System
IMU =  Inertial Measurement Unit

“A framework for estimating driver decisions near intersections,”
Gadepally, et. al., IEEE Transactions on Intelligent 
Transportation Systems, 2014 

(40 min trip -> 30 GB Sensor Log)

“Exploring big volume sensor data with Vroom,”
Moll, et. al., VLDB 2017

Example Autonomous Vehicle Data  Feeds and Speeds

Emerging applications have developing 
hardware requirements
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• Motivation
• Reducing development computing demands
• Finding the right deployment environment
• Datacenter Challenge
• Summary and Air Force Perspective

Outline
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Reducing Development Environment Computing Demands

Model Development Hardware Usage Strategies Performance & Energy Tuning
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• Model design, testing, 
and development

• AI training & inference

• AI-enabled Model 
Discovery[1]

• Knowledge Informed 
Models

• Hardware variety
• Matching workload needs 

to hardware capabilities

• Hardware-based 
interventions

• ML-based hardware 
selection[2]

• Hardware power 
modulation

• Power limiting[3]

• Clock frequency scaling[3]

• Auto-tuning complex 
applications[4]

[1]Neural Scaling of Deep Chemical 
Models – Frey, et. al, Nature 
Machine Intelligence (submitted) 

[2] DASH: Scheduling Deep Learning Workloads 
on Multi-Generational GPU-Accelerated Clusters 
– Li, et. al., IEEE HPEC 2022

[3] Great Power, Great Responsibility: 
Recommendations for Reducing Energy for Training 
Language Models – McDonald, et. al., NAACL 2022

[4] Bliss: auto-tuning complex applications 
using a pool of diverse lightweight learning 
models – Roy, et. al., PLDI 2021
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AI-enabled Model Discovery:
Neural Architecture Search and Hyperparameter Optimization

[1] Energy-aware neural architecture selection and hyperparameter optimization – Frey, et. al,, IEEE IPDPS ADOPT 2022
[2]  Neural Scaling of Deep Chemical Models – Frey, et. al, Nature Machine Intelligence (submitted) 
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Figure 1: Benchmarking experiments training DNNs on more than 400 GPUs with controlled power consump-

tion reveal optimal settings for efficient distributed DL. Over 3,400 distributed training experiments show that
transformer-based models and graph neural networks with directional message passing exhibit superior utilization of
increased computational resources, while restricting GPU power consumption to 200 W reduces total energy con-
sumption without slowing down training. All models see diminishing returns from distributed training at high GPU
counts due to communication bottlenecks.

The complexity of DNNs and the variety of numer-
ical libraries and hardware accelerators [34] available
make predicting the execution time of training a model
challenging. Previous efforts estimated training times
with linear models depending on the number of floating
point operations per epoch [30], while others have lever-
aged DNNs themselves to learn the non-linear relation-
ship [19] between network architecture, the data man-
ifold, computational infrastructure, and execution time.
More recent work to predict the execution time of fine-
tuning DNNs uses a linearized approximation of the dy-
namics of a DNN during fine-tuning [47], following the
Neural Tangent Kernel (NTK) approach [17]. These
methods may yield impressive accuracy in training time
estimation, at least in terms of number of training steps
required, but they are cumbersome and impractical for
daily usage in an HPC center. More relevantly, these ap-
proaches do not account for energy consumption, which
is difficult to estimate for general network configurations
[14, 45], or variation in GPU utilization. Scientists with
limited HPC experience and rapidly changing DL work-
flows need guidance from large-scale, distributed DL
training experiments to optimize resource allocation for
efficient, scalable deep learning.

In this paper, we train six different, representative DL
models (Table 1) with applications across computer vi-
sion (CV), natural language processing (NLP), and geo-
metric deep learning (GDL) and investigate their scaling
behavior across hundreds of GPUs. We monitor GPU
utilization and energy consumption during distributed
training and identify optimal settings for efficient train-

thorized by the U.S. Government may violate any copyrights that exist
in this work.

ing and opportunities for improved scaling and hardware
utilization. Our main goal is not to generate precise pre-
dictions of execution time, but instead to study the im-
pacts of and the relationship between model architec-
ture and compute utilization on distributed training time.
By comparing model architectures via their scaling ex-
ponents, we can estimate training times for variations
on common architectures such as convolutional neural
networks (CNNs), transformer-based language models,
and graph neural networks (GNNs). This will help sci-
entific DL practitioners in developing methods to better
profile different model architectures and determine the
most time and energy-efficient workflow for their own
hardware configurations.

To the best of our knowledge, current literature on
scaling experiments for DL has not focused on the effects
of energy-consumption strategies such as power limiting
the hardware or changing clock frequencies of the GPU
to limit performance. We hope that these findings will
also help enable predictions of model-scaling behavior
on performance-limited hardware to potentially antici-
pate the energy needs for different classes of DNNs in
future work.

2 Methods and Experimental Setup

Environment All experiments described in this paper
were conducted on an operational, petascale supercom-
puting system. The cluster consists of 448 compute
nodes with dual Intel Xeon Gold 6248 CPUs with 384
GB of RAM and two NVIDIA Volta V100 GPUs with
32 GB of memory per node. A graphical summary of the
experiments and insights presented in this paper is shown

2

Batch size 32 Batch size 128

QoS

Cost-eff.

QoS and cost-effectiveness are at odds!

Incoming query stream may have queries of different batch sizes
6

Performance 
Targets

Model 
Selection

Architecture searches and parameter optimization has significant compute requirements
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Modeling performance: training speed estimation (TSE)

Ru, Robin, et al. "Speedy Performance Estimation for Neural Architecture Search." Advances in Neural Information Processing Systems 34 (2021).

How do we speed up time to performance for new models and datasets?

• TSE is a simple, efficient, computationally cheap method for neural architecture 
search and hyper-parameter optimization

Area under 
training loss 

curve

Training steps

Lo
ss

Training speed 
estimation

ℒ!"#$%&'%(

Features and Associated Labels

Neural Network

Loss Function
Number of 
Completed 

Epochs

Neural Scaling of Deep Chemical Models – Frey, et. al, Nature Machine Intelligence (submitted) 
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Training Performance Estimator (TPE) for Efficient Neural 
Architecture Search and Hyperparameter Optimization

M
od

el
 s

ea
rc

h 
sp

ac
e

Train

Train

Model 
Selection

Evaluation
Dataset

Meet Quality-of-Service (QoS)
Performance to meet the p99 tail latency

Find cost-effective solution 
Minimize TCO, hardware renting fee

Model Inference Serving System 
Requirements

4

Figure 1: Benchmarking experiments training DNNs on more than 400 GPUs with controlled power consump-

tion reveal optimal settings for efficient distributed DL. Over 3,400 distributed training experiments show that
transformer-based models and graph neural networks with directional message passing exhibit superior utilization of
increased computational resources, while restricting GPU power consumption to 200 W reduces total energy con-
sumption without slowing down training. All models see diminishing returns from distributed training at high GPU
counts due to communication bottlenecks.

The complexity of DNNs and the variety of numer-
ical libraries and hardware accelerators [34] available
make predicting the execution time of training a model
challenging. Previous efforts estimated training times
with linear models depending on the number of floating
point operations per epoch [30], while others have lever-
aged DNNs themselves to learn the non-linear relation-
ship [19] between network architecture, the data man-
ifold, computational infrastructure, and execution time.
More recent work to predict the execution time of fine-
tuning DNNs uses a linearized approximation of the dy-
namics of a DNN during fine-tuning [47], following the
Neural Tangent Kernel (NTK) approach [17]. These
methods may yield impressive accuracy in training time
estimation, at least in terms of number of training steps
required, but they are cumbersome and impractical for
daily usage in an HPC center. More relevantly, these ap-
proaches do not account for energy consumption, which
is difficult to estimate for general network configurations
[14, 45], or variation in GPU utilization. Scientists with
limited HPC experience and rapidly changing DL work-
flows need guidance from large-scale, distributed DL
training experiments to optimize resource allocation for
efficient, scalable deep learning.

In this paper, we train six different, representative DL
models (Table 1) with applications across computer vi-
sion (CV), natural language processing (NLP), and geo-
metric deep learning (GDL) and investigate their scaling
behavior across hundreds of GPUs. We monitor GPU
utilization and energy consumption during distributed
training and identify optimal settings for efficient train-

thorized by the U.S. Government may violate any copyrights that exist
in this work.

ing and opportunities for improved scaling and hardware
utilization. Our main goal is not to generate precise pre-
dictions of execution time, but instead to study the im-
pacts of and the relationship between model architec-
ture and compute utilization on distributed training time.
By comparing model architectures via their scaling ex-
ponents, we can estimate training times for variations
on common architectures such as convolutional neural
networks (CNNs), transformer-based language models,
and graph neural networks (GNNs). This will help sci-
entific DL practitioners in developing methods to better
profile different model architectures and determine the
most time and energy-efficient workflow for their own
hardware configurations.

To the best of our knowledge, current literature on
scaling experiments for DL has not focused on the effects
of energy-consumption strategies such as power limiting
the hardware or changing clock frequencies of the GPU
to limit performance. We hope that these findings will
also help enable predictions of model-scaling behavior
on performance-limited hardware to potentially antici-
pate the energy needs for different classes of DNNs in
future work.

2 Methods and Experimental Setup

Environment All experiments described in this paper
were conducted on an operational, petascale supercom-
puting system. The cluster consists of 448 compute
nodes with dual Intel Xeon Gold 6248 CPUs with 384
GB of RAM and two NVIDIA Volta V100 GPUs with
32 GB of memory per node. A graphical summary of the
experiments and insights presented in this paper is shown

2

Batch size 32 Batch size 128

QoS

Cost-eff.

QoS and cost-effectiveness are at odds!

Incoming query stream may have queries of different batch sizes
6

Performance 
Targets

Training performance estimation (TPE) combines training speed estimation and energy 
consumption tracking to minimize energy expenditure

Training
Performance
Estimation

[1] Energy-aware neural architecture selection and hyperparameter optimization – Frey, et. al,, IEEE IPDPS ADOPT 2022
[2] Neural Scaling of Deep Chemical Models – Frey, et. al, Nature Machine Intelligence (submitted) 
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Neural Architecture Optimization for GNNs

80% total computing savings with early identification of optimal training configurations

True Loss

Pr
ed
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te

d 
Lo

ss

Predicted Model Performance for SchNet[3]

[3] Schnet: A continuous-filter convolutional neural network for modeling 
quantum interactions, Schutt, et. al, NeurIPS 2017

[1] Energy-aware neural architecture selection and hyperparameter optimization
– Frey, et. al,, IEEE IPDPS ADOPT 2022

[2]  Neural Scaling of Deep Chemical Models – Frey, et. al, Nature Machine Intelligence (submitted) 
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• Motivation
• Reducing development computing demands
• Finding the right deployment environment
• Datacenter Challenge
• Summary and Air Force Perspective

Outline
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A Few AI Deployment Challenges…

Compilers/Middleware Hardware Capabilities Application Demands
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• Inefficient AI middleware
• Particularly with newer 

hardware platforms

• TapirXLA[1] Compiler for 
Tensorflow

• Huge spectrum of 
capabilities

• Changing Mission Needs

• AI-enabled auto-tuning 
and workflow scheduling[2]

• Dynamic Requirements
• Transitioning between 

“datacenter” and “edge”

• RIBBON[3]: Leveraging 
heterogenous computing 
for dynamic  

[1] TapirXLA: Embedding fork-join parallelism into the XLA compiler 
in Tensorflow using tapir. – Schardl, Samsi, IEEE HPEC 2019.

[2] Mashup: making serverless computing useful for HPC 
workflows via hybrid execution – Roy, et al., PPoPP 2022

[3] RIBBON: cost-effective and qos-aware deep 
learning model inference using a diverse pool of cloud 
computing instances – Li, et al., SC 2021
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Serving Inference Queries Under Evolving Requirements

Dynamic mission and hardware constraints need  automated hardware selection

AI Recommendation

DoD Mission

Task Constraints Hardware

• Inference
• Recommendation 

System
• Time series 

analysis

• Minimize latency
• Maximize 

throughput
• Minimum QoS
• Minimize Energy

• CPU
• GPU
• TPU
• …
• Custom hardware

Optimize

Datacenter/Secure cloud

Edge Systems

Command Post Systems

ü

û

û
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Observation: Different hardware platforms provide 
capabilities at different costs

Idea: Mix and Match Hardware that satisfies high-end goals while minimizing other 
functions

Application: Weather Forecasting
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Example (Streaming) Inference Serving Tasks

Cancer Tumor Prediction 
(CANDLE)

Deep Learning Recommender Models 
(MT-WND, DIEN)

• Large-scale fully-connected DNN 
model in Cancer Distributed Learning 
Environment (CANDLE) project

• Predicts tumor cell line response to 
drug pairs

• Multi-Task Wide and Deep – model 
used for YouTube video 
recommendations

• Deep Interest Evolution Network –
model used in e-commerce 
recommendations (Alibaba)
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Meet Quality-of-Service (QoS)
Performance to meet the p99 tail latency

Find cost-effective solution 
Minimize TCO, hardware renting fee

Inference Serving System Requirements
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Problem Statement

Vs.

*Cost could be $$$, Energy, …

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of 
cloud computing instances – Li, et al., SC 2021

Find the least expensive* optimal diverse configuration pool while meeting 
the inference query QoS target
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Problem Statement

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of 
cloud computing instances – Li, et al., SC 2021

Given a certain heterogeneous instance types (e.g., X, Y, Z), how to determine the optimal 
number of each instance type in the heterogeneous pool (i.e., c1*X + c2*Y +c3*Z)? 

Vs.
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RIBBON Builds Inference Serving System Using 
Diverse Computing Instances

Objective: 
most cost-effective serving 

systems while meeting QoS targets

RIBBON’s Bayesian 
Optimization Engine

QoS targets

Minimal cost

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of 
cloud computing instances – Li, et al., SC 2021
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Bayesian Optimization: performs strategic global sampling to optimize unknown 
objective with limited total samples.

True objective function 
(unknown)

Sampled configurations Surrogate model

Confidence interval

Acquisition 
function

RIBBON Bayesian Optimization Engine

27RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of 
cloud computing instances – Li, et al., SC 2021
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With more sampled configurations, surrogate model becomes 
closer to true objective function

Optimal configuration 
found!

RIBBON Bayesian Optimization Engine

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of 
cloud computing instances – Li, et al., SC 2021
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Objective function
• Minimize cost
• While meeting QoS targets

Surrogate
model

Gaussian process

Tree Parzen 
estimator

Polynomial 
estimator

Covariance 
function

Matern 5/2 kernel

Dot product

Rational 
Quadratic

Acquisition 
function
Expected 

improvement

Upper confidence 
bound

Probability of 
improvement

Guides optimizer towards 
QoS satisfaction smoothly

Normalized total 
serving cost

Ensures QoS 
satisfaction

Design Considerations

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of 
cloud computing instances – Li, et al., SC 2021
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Significant cost savings across inference 
tasks while meeting various QoS targets

CANDLE CANcer Distributed Learning Environment drug response model

ResNet50 CNN model with residual operations, applied in image classification

VGG19 Popular computer vision model
MT-WND Multi-Task Wide-and-Deep, deep learning model for YouTube video recommendation

DIEN Deep Interest Evolution Network, used for e-commerce recommendation

Cost savings of RIBBON suggested hardware pool 
vs. best homogenous configuration

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of 
cloud computing instances – Li, et al., SC 2021
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• Motivation
• Reducing development computing demands
• Finding the right deployment environment
• Datacenter Challenge
• Summary and Air Force Perspective

Outline
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• Challenge to enable datacenters that can:
- Predict and identify system failures 
- Optimize system scheduling for improved 

resource consumption
- Suggest optimization pathways for users

• Open-source data to improve operational 
capabilities on a variety of AI workloads

• Contents:
– Scheduler Logs
– CPU/GPU timeseries
– BMS/Environmental Data
– Labelled workloads

Datacenter Challenge 

The Fast AI Datacenter Challenge aims to foster innovation in AI approaches to the 
analysis of large scale datacenter monitoring logs

https://dcc.mit.edu/
https://news.mit.edu/2022/taking-magnifying-glass-data-center-operations-0824
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• Over 2+ TB of time series data collected, parsed, anonymized and ready for 
distribution
– Resource utilization from ~500K jobs 
– Includes ~100K GPU workloads
– Labelled dataset of 3,425 known deep learning workloads from Vision, NLP and GNN

• Mixture of Tensorflow and pytorch implementations

• Data dissemination
– Available on Amazon AWS Open Data Registry : 

s3://mit-supercloud-dataset/datacenter-challenge

– Scripts and data loaders
https://github.com/MIT-AI-Accelerator

• Relevant Publications:
– The MIT Supercloud Dataset, IEEE HPEC’21
– AI-Enabling Workloads on Large-Scale GPU-Accelerated System: Characterization, 

Opportunities, and Implications,  HPCA’22

Current Status

NLP – Natural Language Processing
GNN – Graph Neural Networks
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Example Research:
Efficient, Scalable AI training on HPC Systems

• Performed over 3,400 deep learning workload experiments on LLSC systems

• Trained 6 state-of-the-art neural networks across vision, natural language processing, 
chemistry, and materials science domains on up to 424 GPUs

Benchmarking experiments on more than 400 GPUs with controlled hardware settings 
reveal optimal settings for large-scale deep learning workflows.

Training time versus number of GPUs is well-
described by empirical power laws.

Findings will guide high-performance computing providers in optimizing resource usage

Distributed deep learning Benchmarking resource usage

GPUs

Power Resources

Tr
ai

ni
ng

 
tim

e
Optimal training settings

Transformer-based 
architecture

𝑛∗ GPUs

200 W

Geometric deep learning, 
natural language, 
computer vision



Slide - 35

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G  C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G  C E N T E R

• Motivation
• Reducing development computing demands
• Finding the right deployment environment
• Datacenter Challenge
• Summary and Air Force Perspective

Outline
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USAF-MIT AI Accelerator

DAF-MIT AI Accelerator (AIA) 
Bringing World-Class Research to USAF Missions

Mission-ready Projects

Foundational 
AI Research

AI Challenge 
Problems

AI Education 
and Training

AI Researchers

MIT Campus MIT Lincoln Laboratory US Air Force

Air Force Missions

Cyber

ISR and Autonomy 

Air Defense

Air Force Operations

Personnel Recovery

Data Center Operations

Pilot Safety
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• The DAF’s mission is to deter conflict and if 
necessary, defeat adversaries across the air and 
space domains
– Constraints: time, cost, law/policy, operational 

environment, weather/climate, energy
– Enablers: AI, capable allies & partners, access to 

cutting edge research

• The research conducted by MIT:
– Advances the goals of the DAF’s Climate Action Plan

• Optimize energy use & make climate-informed decisions
– Optimizes performance on DAF’s existing hardware, 

saving costly tech refresh cycles
– Can increase throughput or extend battery life on 

edge devices
– Is supported by embedded Airmen

• Collaborative R&D with continuous end-user feedback

Impact on Department of the Air Force
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• Need for tools that bridge gap between development and deployment environments
• Challenges:
– Increasing computing requirements
– Energy / cooling limits
– Hardware diversity
– Evolving missions/workloads

• Opportunity to leverage AI to mitigate challenges
• LLSC looking for talented postdocs/staff. If interested, email me!

vijayg@ll.mit.edu

Summary


