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Low Carbon

L Ml , 5 TRl Emission
- Significant increase in computing power for _ Capability
SimUIation, data anaIySiS, and machine Iearning Processor Intel Xeon & Nvidia Volta
* Critical computing power for simulation, data Total Cores 237 000
analysis, and machine learning
Peak 7.4 Petaflops
Top500 5.2 Petaflops
Memory 172 Terabytes
Peak Al Flops 100+ Petaflops
. Operates on renewable enerqy Network Link Intel OmniPath 25 GB/s
Slide - 3 *Based on 2020 Top500.org MIT LINCOLN LABORATORY
Al Flops = 4x4 matrix multiply half precision in, single precision out (mixed precision training)

SUPERCOMPUTING CENTER



Al Development vs Deployment

Industry

Original TPU chip 2

Edge TPUs

Edge Devices and Platforms
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(Deployment)
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Edge Devices and Platforms
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E[ A Few Trends and Observations

Future Directions for NSF Advanced Computing .
Infrastructure to Support U.S, Science and C hal Ienges Tre nds and Observat|ons

Computing Performance Large number of many-cores; concurrency and locality;
instruction level parallelism | Moore’s law dead: Power and
memory walls; clock rate limitations

Hardware Platforms Domain Specific Accelerators: Heterogenous edge computing;
legacy hardware solutions

Power and Energy Unsustainable energy requirements: Power and energy walls;
growing environmental impact

prowesnre New Application Areas Unknown requirements: new applications face “new” problems
Interim Report (e.g., seamless transition between development and deployment)
Research and Education: Lack of trained computing engineers; Research:
Development difficult to collect and develop solutions based on real data

Top-level trends:
°* Renewed resurgence of HPC solutions to power Al and research innovations
°* Need for “seamless” transition between HPC and Deployment (Edge) environments

Slide - 5 MIT LINCOLN LABORATORY
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E[ Trend 1: Al Development Computing Requirements Gap

Deep Learning era
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Need for tools that bridge computing gap

Slide - 6 Source: Neil Thompson, MIT CSAIL
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[5] Corollary Trend 1: Major Source of Carbon Emissions

Deep Learning era -~
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Deep learning energy requirements are growing unsustainably

[1] Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. [2] The Energy and Carbon Footprint of Training End-to-End Speech Recognizers -
2021. Deep Learning’s Diminishing Returns: The Cost of Improvement is Becoming Parcollet, T., & Ravanelli, M., 2021 MIT LINCOLN LABORATORY
Unsustainable. IEEE Spectrum.
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]S_:[ Trend 2: Growing diversity of ML Accelerators

2019 Snapshot Legend
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Slide - 8 A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi and J. Kepner, "Survey and Benchmarking of Machine Learning Accelerators," 2019 IEEE High MIT LINCOLN LABORATORY
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Trend 2: Growing diversity of ML Accelerators
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A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi and J. Kepner, Al and ML Accelerator Survey and Trends," 2022 IEEE High Performance

Extreme Computing Conference (HPEC), 2022, pp. 1-10.
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]S_E[ Trend 3: Emerging Application Domains

Health Care Transportation loT/Smart XYZ m

 Correlate data across millions * Billions of vehicles * Billions of small “edge” * Sell you things better, supply
of patients - Need to correlate high rate connected devices across chain management,
« Evidence Based Medicine information from different homes, cities, countries, ... inventory management
. Data from different modalities vehicles . h_le_ed to identify patterns of » Dozens of existing enterprise
. More sensors -> More living and correlate for systems connected to
* Image problems improved efficiency and numerous management
« Video ] safety systems (credit card
. Signal * Can be used to improve processing, FedEX, ...)
Igha quality of transportation
* Text systems
Slide - 10 MIT LINCOLN LABORATORY
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C Application Example: Autonomous Vehicles

Primary GPS

Camera System

Mobileye
Image Processing
System

MA Com
Ibeo Alasca XP SRS Radar

Laser Rangefinder MA Com

SRS Radar

/ Secondary GPS

Sick LMS-221
Laser Rangefinder

Example Autonomous Vehicle Data Feeds and Speeds

Sensor Type | Frequency | Data rate | Data type

Lidar 10 Hz 8 MBps Point cloud
Lower-res Lidar (x4) 55 Hz 1 MBps Point cloud
Lower-res Camera (x4) 20 Hz 4 MBps JPEG frames

High-res Camera 4 Hz 1 MBps JPEG frames

CAN bus 900 Hz 50 KBps | Custom struct
IMU 50 Hz 30 KBps | Custom struct
Compass 100 Hz 10 KBps | Custom struct
GPS 6 Hz < 1 KBps | Custom struct

(40 min trip -> 30 GB Sensor Log)

Emerging applications have developing
hardware requirements

In-Vehicle data processing

Com = Communication V2V: Vehicle to Vehicle
GPS = Global Positioning System  v2|: Vehicle to Infrastructure
IMU = Inertial Measurement Unit

Slide - 11

“A framework for estimating driver decisions near intersections,”
Gadepally, et. al., IEEE Transactions on Intelligent
Transportation Systems, 2014

“Exploring big volume sensor data with Vroom,”
Moll, et. al., VLDB 2017
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E[ Outline

Motivation

Reducing development computing demands

!

Finding the right deployment environment

Datacenter Challenge

Summary and Air Force Perspective
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[

Reducing Development Environment Computing Demands

Model Development Hardware Usage Strategies Performance & Energy Tuning
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P « Model design, testing, . Hardware variety Hardware power

o and development _ modulation

* Matching workload needs
* Al training & inference to hardware capabilities

C * Al-enabled Model e Hardware-based Power IImltlng[31
Q O : 1 : :
? S Discoveryl'l Interventions Clock frequency scaling!3]
o = . . :
o2 |\K/|22|vev|lsedge ionEd ML-ba_sedzhardware Auto-tuning complex

Slide - 13 [1]Neural Scaling of Deep Chemical  [2] DASH: Scheduling Deep Learning Workloads [3] Great Power, Great Responsibility: [4] Bliss: auto-tuning complex applications MIT LINCOLN LABORATORY

Models — Frey, et. al, Nature
Machine Intelligence (submitted)

on Multi-Generational GPU-Accelerated Clusters
— Li, et. al., IEEE HPEC 2022

Recommendations for Reducing Energy for Training using a pool of diverse lightweight learning
Language Models — McDonald, et. al., NAACL 2022 models — Roy, et. al., PLDI/ 2021

SUPERCOMPUTING CENTER



E[ Al-enabled Model Discovery:
Sl Neural Architecture Search and Hyperparameter Optimization
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Architecture searches and parameter optimization has significant compute requirements

Slide - 14 [1] Energy-aware neural architecture selection and hyperparameter optimization — Frey, et. al,, IEEE IPDPS ADOPT 2022 MIT LINCOLN LABORATORY
[2] Neural Scaling of Deep Chemical Models — Frey, et. al, Nature Machine Intelligence (submitted) SUPERCOMPUTING CENTER



E[ Modeling performance: training speed estimation (TSE)

How do we speed up time to performance for new models and datasets?

Features and Associated Labels

[ % . Training speed\

estimation

T B
Area under 1
TSE = =2t (Xi),Yi
training loss ; B ; (fo.:(X:),¥i)
curve =

Lconverged

Neural Network

Number of
Completed
Epochs

>
\_ Training steps  /

Loss Function

TSE is a simple, efficient, computationally cheap method for neural architecture
search and hyper-parameter optimization

Slide - 15 Ru, Robin, et al. "Speedy Performance Estimation for Neural Architecture Search." Advances in Neural Information Processing Systems 34 (2021).
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Neural Scaling of Deep Chemical Models — Frey, et. al, Nature Machine Intelligence (submitted) SUPERCOMPUTING CENTER



E[ Training Performance Estimator (TPE) for Efficient Neural
< Architecture Search and Hyperparameter Optimization
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Training performance estimation (TPE) combines training speed estimation and energy
consumption tracking to minimize energy expenditure
Slide - 16 [1] Energy-aware neural architecture selection and hyperparameter optimization — Frey, et. al,, IEEE IPDPS ADOPT 2022 MIT LINCOLN LABORATORY

[2] Neural Scaling of Deep Chemical Models — Frey, et. al, Nature Machine Intelligence (submitted) SUPERCOMPUTING CENTER



E[ Neural Architecture Optimization for GNNs

Predicted Model Performance for SchNet!

6

« Model
~ configuration

Predicted Loss

? Optimal
/ configurations

2 4 6
True Loss

80% total computing savings with early identification of optimal training configurations

Slide - 17 [1]FEnergy—ava;gggl;g$g§fztgcotg?25{?'2920ﬁ0n and hyperparameter optimization [3] Schnet: A continuous-filter convolutional neural network for modeling MIT LINCOLN LABORATORY
— Frey, et. al,, quantum interactions, Schutt, et. al, NeurlPS 2017 SUPERCOMPUTING CENTER
[2] Neural Scaling of Deep Chemical Models — Frey, et. al, Nature Machine Intelligence (submitted)



E[ Outline

Motivation

Reducing development computing demands

Finding the right deployment environment

|

Datacenter Challenge

Summary and Air Force Perspective
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E[ A Few Al Deployment Challenges...

Compilers/Middleware Hardware Capabilities Application Demands

92 =

g

O  Inefficient Al middleware * Huge spectrum of  Dynamic Requirements

* Particularly with newer capabilities « Transitioning between
hardware platforms « Changing Mission Needs “datacenter” and “edge”

5w « TapirXLAI'l Compiler for - Al-enabled auto-tuning « RIBBONEI: Leveraging
“ i Tensorflow and workflow scheduling!?! heterogenous computing
e 5 for dynamic
e
o <

Slide - 19 [1] TapirXLA: Embedding fork-join parallelism into the XLA compiler  [2] Mashup: making serverless computing useful for HPC [3] RIBBON: cost-effective and qos-aware deep MIT LINCOLN LABORATORY

: . . : : ; : learning model inference using a diverse pool of cloud
in Tensorflow using tapir. — Schardl, Samsi, IEEE HPEC 2019. workflows via hybrid execution — Roy, et al., PPoPP 2022
gfap y Y computing instances — Li, et al., SC 2021 SUPERCOMPUTING CENTER



]S_:[ Serving Inference Queries Under Evolving Requirements

Al Recommendation

Datacenter/Secure cloud

DoD Mission ﬁjﬁ

— =

Command Post Systems

Constraints Hardware

-

* Inference * Minimize latency + CPU
+ Recommendation « Maximize * GPU ..
System throughput - TPU Optimize
+ Time series * Minimum QoS
analysis « Minimize Energy * Custom hardware

Dynamic mission and hardware constraints need automated hardware selection

Slide - 20 MIT LINCOLN LABORATORY
SUPERCOMPUTING CENTER




Observation: Different hardware platforms provide
capabilities at different costs

Application: Weather Forecasting

Mean Latency Throughput Power
20004 1915 066 | <2007 184.98
7] 06
— 1500+ 1517 | n | 0.52 150
W O b
& — "
- = 0.41 =
e 1000 e . 100 -
9 S z 71.43
n o Q
- =02 &
500 1 €% 50 1
0 - 0.0 v -
T4 P100 T4 P100 T4 P100

Idea: Mix and Match Hardware that satisfies high-end goals while minimizing other
functions

MIT LINCOLN LABORATORY
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E[ Example (Streaming) Inference Serving Tasks

Deep Learning Recommender Models
(MT-WND, DIEN)

Cancer Tumor Prediction
(CANDLE)

Cell line Residual connections

Molecular
(a)
molecular I oo e o B NN
features g \ Drug
g’a n = R’ Response
i 2 === = Prediction
dio my Shareddrug 8|\ F TS
- descriptor DNN a||lad |d @

features

« Large-scale fully-connected DNN
model in Cancer Distributed Learning
Environment (CANDLE) project

* Predicts tumor cell line response to
drug pairs

Categorial
Features | Embedding
Tables

Lookup

Il

Feature
Interaction
Predictor
DNN
Feature ‘ Tﬁic:g-h
Representation . . » =55,

Continuous | Feature DNN
Features
_.

Multi-Task Wide and Deep — model
used for YouTube video
recommendations

Il

Deep Interest Evolution Network —

model used in e-commerce
recommendations (Alibaba)

Slide - 22
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E[ Inference Serving System Requirements

f"\ Meet Quality-of-Service (QoS)
/A Performance to meet the p99 tail latency

. Find cost-effective solution
@ Minimize TCO, hardware renting fee

MIT LINCOLN LABORATORY
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Problem Statement
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Find the least expensive* optimal diverse configuration pool while meeting
the inference query QoS target

*Cost could be $$$, Energy, ...

Slide - 24

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of

cloud computing instances — Li, et al., SC 2021

MIT LINCOLN LABORATORY
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Problem Statement

NVIDIA. inside
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S

Qualcomm
snapdragon j

Given a certain heterogeneous instance types (e.g., X, Y, Z), how to determine the optimal
number of each instance type in the heterogeneous pool (i.e., c1*X + c2*Y +¢c3*Z)?

Slide - 25

RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of

cloud computing instances — Li, et al., SC 2021

MIT LINCOLN LABORATORY
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E[ RIBBON Builds Inference Serving System Using
< Diverse Computing Instances

QoS targets Objective:
o™ most cost-effective serving
<§ 4 systems while meeting QoS targets

NVIDIA. »
TESLA

Iy

NVIDIA. solp

») TESLA -
XEOQ} { | AMDET |

RIBBON'’s Bayesian s
\ Optimization Engine /

Minimal cost V

N > J

Slide - 26 RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of MIT LINCOLN LABORATORY
cloud computing instances — Li, et al., SC 2021 SUPERCOMPUTING CENTER



]S_:[ RIBBON Bayesian Optimization Engine

Bayesian Optimization: performs strategic global sampling to optimize unknown
objective with limited total samples.

True objective function

(unknown) Confidence interval

: : Acquisition
Sampled configurations Surrogate model quis
function
Slide - 27 RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of MIT LINCOLN LABORATORY/

cloud computing instances — Li, et al., SC 2021 SUPERCOMPUTING CENTER



E[ RIBBON Bayesian Optimization Engine

With more sampled configurations, surrogate model becomes
closer to true objective function

Optimal configuration
found!

Slide - 28 RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of MIT LINCOLN LABORATORY
cloud computing instances — Li, et al., SC 2021 SUPERCOMPUTING CENTER



[

Design Considerations

Surrogate Covariance Acquisition
model function function
Gaussian process Matern 5/2 kernel Expected
improvement

Tree Parzen

Dot product |

| Upper confidence |

|

estimator l bound JI
Polynomial Rational Ir_l_Dr_oTo;I;ITt; gf__} Guides optimizer towards
estimator Quadratic | improvement | . .
e y - QoS satisfaction smoothly
R, | e s
1. Rsar(x) if violates QoS,
2 Thos
HGER
Objective function " PiXi .
jective Tl % +% (1 — ,’,“p_'_ ~) otherwise.
Minimize cost \ i—1 Pi-m;
®* While meeting QoS targets - ~——

Ensures QoS
satisfaction

Normalized total
serving cost

Slide - 29 RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of

cloud computing instances — Li, et al., SC 2021
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]s:[ Significant cost savings across inference
< tasks while meeting various QoS targets

Cost savings of RIBBON suggested hardware pool
vs. best homogenous configuration

30 A [199th Percentile [ 98th Percentile

=
0 o 20 -
O ¢
Y-S

®© 10 -

0]

0
CANDLE ResNet50 VGG19 MT-WND DIEN
CANDLE CANcer Distributed Learning Environment drug response model
ResNet50 CNN model with residual operations, applied in image classification
VGG19 Popular computer vision model
MT-WND Multi-Task Wide-and-Deep, deep learning model for YouTube video recommendation
DIEN Deep Interest Evolution Network, used for e-commerce recommendation
Slide - 30 RIBBON: cost-effective and qos-aware deep learning model inference using a diverse pool of MIT LINCOLN LABORATORY
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E[ Outline

Motivation

Reducing development computing demands

Finding the right deployment environment

)

Datacenter Challenge

Summary and Air Force Perspective
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E[ Datacenter Challenge

« Challenge to enable datacenters that can:

- Predict and identify system failures

- Optimize system scheduling for improved
resource consumption

- Suggest optimization pathways for users

"
"

I
* Open-source data to improve operational i il
capabilities on a variety of Al workloads

0

« Contents:
— Scheduler Logs e e e B
— CPU/GPU timeseries 5 -

— BMS/Environmental Data
— Labelled workloads
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The Fast Al Datacenter Challenge aims to foster innovation in Al approaches to the
analysis of large scale datacenter monitoring logs

https://dcc.mit.edu/ MIT LINCOLN LABORATORY
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E[ Current Status

« Over 2+ TB of time series data collected, parsed, anonymized and ready for
distribution

— Resource utilization from ~500K jobs
— Includes ~100K GPU workloads

— Labelled dataset of 3,425 known deep learning workloads from Vision, NLP and GNN
- Mixture of Tensorflow and pytorch implementations

- Data dissemination
— Available on Amazon AWS Open Data Registry :
s3://mit-supercloud-dataset/datacenter-challenge

— Scripts and data loaders
https://github.com/MIT-AI-Accelerator

 Relevant Publications:
— The MIT Supercloud Dataset, IEEE HPEC’21

— Al-Enabling Workloads on Large-Scale GPU-Accelerated System: Characterization,
Opportunities, and Implications, HPCA’22

Slide - 33 NLP — Natural Language Processing MIT LINCOLN LABORATORY
GNN - Graph Neural Networks
SUPERCOMPUTING CENTER



E[ Example Research:
\ Efficient, Scalable Al training on HPC Systems

Performed over 3,400 deep learning workload experiments on LLSC systems

Trained 6 state-of-the-art neural networks across vision, natural language processing,
chemistry, and materials science domains on up to 424 GPUs

Distributed deep learning Benchmarking resource usage Optimal training settings

1\\ e DimeNet e SchNet
102} Te
. . : \\..\
Geometric deep learning, < C Ry
natural |anguage, Transformer'based LO) r .\‘\\\
computer vision o architecture 5] «~~._ Equivariant
E ) ~ 101 L e }\\
£ E g - TN
®© = ~~‘~..\ Sso
. . . |’: : : [ \L\\.\.
- - [ o T~~a__
"""""" Non-equivariant « TTom--
3 3 = g . o - L] S~
{0 cPus ELIE 10°F E MR SRY
............ L L
Eag  ow
E‘!j E‘!j esources Number of GPUs

Benchmarking experiments on more than 400 GPUs with controlled hardware settings

Training time versus number of GPUs is well-
reveal optimal settings for large-scale deep learning workflows.

described by empirical power laws.

Findings will guide high-performance computing providers in optimizing resource usage

Slide - 34
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E[ Outline

Motivation

Reducing development computing demands

Finding the right deployment environment

Datacenter Challenge

|

Summary and Air Force Perspective
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DAF-MIT Al Accelerator (AlA)
Bringing World-Class Research to USAF Missions

o

Air Force Missions

Cyber

%

ISR and Autonomy

Air Defense

/

USAF-MIT Al Accelerator

MIT Campus

= SEioE=EE .
.. B j?
EEmEEE | ]
|
Al Researchers
W
9 Q.’/
MIT Lincoln Laboratory  US Air Force

~

Foundational
Al Research

Al Challenge
Problems

Al Education
and Training

Air Force Operations

Slide - 36
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Il Impact on Department of the Air Force

« The DAF’s mission is to deter conflict and if
necessary, defeat adversaries across the air and
space domains

— Constraints: time, cost, law/policy, operational
environment, weather/climate, energy

— Enablers: Al, capable allies & partners, access to
cutting edge research

 The research conducted by MIT:
— Advances the goals of the DAF’s Climate Action Plan
- Optimize energy use & make climate-informed decisions

— Optimizes performance on DAF’s existing hardware,
saving costly tech refresh cycles

— Can increase throughput or extend battery life on
edge devices

— Is supported by embedded Airmen
- Collaborative R&D with continuous end-user feedback

Wartime .
(Peer Competition) Peacetime

or

Improving operational energy
intensity increases combat
capability, readiness, and
aircraft availability

Improving operational
energy intensity creates
energy cost savings

Operational energy intensity
in war and peace.

Slide - 37
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E[ Summary

Need for tools that bridge gap between development and deployment environments

Challenges:

— Increasing computing requirements
— Energy / cooling limits

— Hardware diversity

— Evolving missions/workloads

Opportunity to leverage Al to mitigate challenges

LLSC looking for talented postdocs/staff. If interested, email me!
vijayg@lIl.mit.edu

Slide - 38 MIT LINCOLN LABORATORY
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