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Tea Time In Britain
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Peaks	occur	during	major	sporting	events
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Price	Volatility:	 Summer	peak

20th,	July	2015

Nominal price: $25/MWh Peak Price: $800/MWh

32x!
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Price	Volatility:	Winter	peak

24th,	January	2014

Nominal price: $31.21/MWh Peak Price: $2,680.21/MWh

86x!
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Price	volatility	 is	the	new	normal
PJM (ISO) Locational Marginal Prices (LMPs) example
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“All	kilowatts	are	not	created	equally”
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Demand	Response	– Looks	familiar



Demand response challenges
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Q) What is the best change that you can make right now ?

Model-based predictive control (MPC)
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Model	Predictive	Control	(MPC)
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Model	Predictive	Control	 (MPC)
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The	control	problem	in	buildings
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Integrated	control	of:

• Heating
• Cooling
• Ventilation
• Lighting
• Blinds	
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Model-based predictive control for buildings

17



Q) What is the best change that you can make right now ?

Model-based predictive control (MPC)
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How	do	you	build	these	models	?



How	are	building	models	obtained	today	?
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Hire	building	
modeling	
experts

Set	parameters
Floor	by	floor
Zone	by	zone
Wall	by	wall
Layer	by	layer
Equipment	by	
equipment

Transfer	geometry

Floor	Plan
HVAC	layout

Not	always

available

Guess	nominal
parameter	
values

First	principles	based	building	energy	simulation

Model	Tuning
Data

Sensor	retrofits

Building energy modeling using first-principles



Hire	building	
modeling	
experts

Set	parameters
Floor	by	floor
Zone	by	zone
Wall	by	wall
Layer	by	layer
Equipment	by	
equipment

Transfer	geometry

Floor	Plan
HVAC	layout

Not	always

available

Guess	nominal
parameter	
values

First	principles	based
High	fidelity

Building	energy	simulation

Model	Tuning
Data

Sensor	retrofits

Cost and time prohibitive
(sensor installation, commissioning & expertise)

Model-based control does not scale
Model complexity and uncertainty, (1000’s parameters and states)
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Building energy modeling using first-principles



Grey-Box [Inverse] Modeling
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Hire	building	
modeling	
experts

Set	parameters
Floor	by	floor
Zone	by	zone
Wall	by	wall
Layer	by	layer
Equipment	by	
equipment

Transfer	geometry

Floor	Plan
HVAC	layout

Not	always

available

Guess	nominal
parameter	
values

Parameter	
Estimation

Data
Sensor	retrofits

Lumped	Parameter
‘RC’	model



Black-Box	Modeling

Data

Could	be
automated

Feature	
engineering

Not well aligned with control synthesis

Coarse grained predictions

Non-physical parameters
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Too	many	sub-systems
Non-linear	interactions

Modeling	using	first	principles	is	hard	!

Each	building	design	is	
different.
Must	be	uniquely	modeled

Long	operational	lifetimes
~50-100	years
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Energy	Systems	Modeling

Suitability	for	control
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Data-Driven	Demand	Response

Can	we	get	the	best	of	both	worlds	?
• Simplicity	of	rule-based	DR
• Predictive	capability	of	model-based	DR
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Data-Driven	predictive	control

Weather Schedule Building Operator
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Data-Driven	predictive	control

Weather Schedule Building Operator
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Data-Driven	predictive	control

Weather Schedule Building Operator
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The Netflix of Energy Management Systems

Will a person like the movie 

‘The Usual Suspects’ ?

Make Recommendations
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Tree	construction	algorithm:	CART

Y = f (X1,X2,...,Xm )
Response

(Power	Consumption)
Predictors

(Temperature,	TimeOfDay,	…	)

X1

X2

t1

t2

t3

t4

X1 = t1• Split	at

• For	 X2 = t2X1 < t1 split	at

• For	 X1 = t3X1 > t1 split	at

• For	 split	at X2 = t4X1 > t3

YR2
YR5

YR1
YR3 YR4

Cell	Model:	Average
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Tree	construction	algorithm:	CART

Y = f (X1,X2,...,Xm )
Response

(Power	Consumption)
Predictors

(Temperature,	TimeOfDay,	…	)

X1 = t1• Split	at

• For	 X2 = t2X1 < t1 split	at

• For	 X1 = t3X1 > t1 split	at

• For	 split	at X2 = t4X1 > t3YR2

YR5

YR1 YR3

YR4

Cell	Model:	Average
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Tree	construction	algorithm:	CART

YR2

YR5

YR1 YR3

YR4

1. Stopping	criteria.
i. MinLeaf

2. Splitting	criteria.
3. Variable	selection.
4. Pruning.
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Data	Description
Weather
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Data	Description
Proxy Variables
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Data	Description
Schedule/Set-Point
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Data	Description
Building’s State



DR	Strategy	Evaluation
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Auto	regressive	trees:	For	Finite	horizon	prediction
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Dry BulbHumidity

Wind

Time Of Day

Day Of Week

Schedule

Chilled Water Temp.

Lighting

Power (kW) Zone Temperature

Y = f (X1,X2,...,Xm )

!" # + 1 = '([*+(#), *.(#), … , *0(#), ! # − 1 , ! # − 2 ,… . , !(# − 4)])
ART(4)



Demand	Response	Challenges

Can	we	synthesizegood	
DR	strategies	?	

DR Strategy	Synthesis	Example

Increase	Chilled	Water	Temperature	Set-Point	by	W	°C

Increase	Zone	Air	Temperature	Set-Point	by	X°C
Turn	off	Elevator	#Y
Dim the	Lights	by	Z%

Can	we	
find	good	
values	
for	W,	X,	
Y	&	Z	in	
real-time	

?
unknown
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What is the best change that you can make right now ?



Regression	trees	for	control	synthesis

Dry BulbHumidity

Wind

Time Of Day

Day Of Week

Schedule

Chilled Water Temp.

Lighting

Power (kW) Zone Temperature

Y = f (X1,X2,...,Xm )

Response
(Power	

Consumption)
Non-

Manipulated
Variables

[Disturbances]

Manipulated
Variables
[control]
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Regression	trees	for	control	synthesis

?
?
?
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Regression	trees	for	control	synthesis

No	forecast	for	
manipulated	variables

(we	want	to	compute	values	for	
these)

Cannot	specify	order	of	
appearance	of	variables	in	

tree	depth
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Separation	of	variables

Tree	learned	only	
on	non-

manipulated	
(disturbances)	

variables/features

Leaf	Model
Regression	with	
manipulated	
variables
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Separation of variables
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mbCRT:	Model	Based	Control	with	Regression	Trees
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Disturbance	(weather)	forecast

[During	a	Demand	Response	Event]

1
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1

Online	control-model	selection	
[using	mode-based	regression	trees]	

2
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[During	a	Demand	Response	Event]

Disturbance	(weather)	forecast



Disturbance	forecast1

Online	control-model	selection
[using	mode-based	regression	trees]	

2

Real	time	optimization
[with	dynamical	constraints]	

3
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[During	a	Demand	Response	Event]



DR	Strategy	Synthesis

Sustained	response	of	380	kW
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DR	Strategy	Synthesis
Correct	linear	model	at	the	leaf	is	chosen	at	each	time-step	for	the	

optimization
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DR	Strategy	Synthesis
Thermal	Comfort	Maintained
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Different	zone	priorities
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Foundations	of	Data	Predictive	Control	for	CPS

mbCRT DPC-RT Ensemble-DPC

Single-step	look	ahead
[with	single	 reg.	trees]

Finite	receding	horizon
[with	single	 reg.	trees]

Finite	receding	horizon
[with	ensemble	models]
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Foundations	of	Data	Predictive	Control	for	CPS

mbCRT DPC-RT Ensemble-DPC

Single-step	look	ahead
[with	single	 reg.	trees]

Finite	receding	horizon
[with	single	 reg.	trees]

Finite	receding	horizon
[with	ensemble	models]
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- ICCPS	‘16,	BuildSys 15,	CISBAT	15,	Journal	
of	Applied	Energy
- Best	Paper	Award	(SRC	TECHCON-IoT):	
‘Sometimes,	Money	Does	Grow	on	Trees’
-Ph.D.	Dissertation:	Madhur	Behl,	UPenn
(2016)

- ACM	BuildSys 16	(Best	
Presentation	Award	)

- ACM	Transactions	of	Cyber	
Physical	Systems.

- American	Control	Conference	
17	(Best	Energy	Systems	Paper	
Award	)



Demand	Response	Recommendation	System

Prediction Accuracy Less energy consumption More DR revenue
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Sometimes,	Money	Does	Grow	On	Trees.
2016	DoE	CLEANTECH	Prize
NSF	SBIR	small	business.	Over	1.2	million	 sq ft modeled	at	the	

University	of	Pennsylvania 6 floor	building	 U.	L'Aquila,	 Italy

$	45,600	in	4	months
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Storm water Flooding – Transportation Modeling
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Data Predictive Control  [DPC]
(bridges the gap )

Modeling	for	predictive	control	is	cost	and	time	
prohibitive!

Data	Predictive	Control	for	Cyber-Physical	Systems

Machine Learning
model output

(suitable for prediction)

Control Synthesis
model input

(requires structural 
properties)

Lack	of	well	defined	gradients

Limitations	of	non-linear	models

Lack	of	interpretability

Lack	of	stability/performance	guarantees

Energy Systems Industrial Systems

Stormwater-Transportation Systems
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Operator	in	the	loop

Plant/System

Decision

Measurement
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Model

Controller

Communication

Recommendation



Interpretable	Regression	Tree	models

Is	Outside	dry	bulb	 temperature	>	77�F	?	

Yes No
Is	it	a	Tuesday	?

Yes No

Yes

…	...	...
Predicted	Power:	163	kW
95%	confidence	 [159.5,	165.7]

Is	the	SAT	>	58�F	

Yes No

Is	Time	of	Day	in	
1300-1400	hrs ?

There	is	traceability around	how	the	
recommendation	was	arrived	at	so	
that	operators	can	understand	it	
and	recalibrate if	necessary.
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Interactive	Analytics

62

What is happening ?

Why did it happen ?

What could happen ?

What action to take ?

Data	discovery	and	exploration

Reporting	and	analysis

Predictive	analytics	and	modeling

Decisions	and	recommendations
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(Q)	Under	what	conditions	does	Rice	Hall	consume	>	75	kW	?

(A) Rice	Hall	consumes	>	75	kw	when:

Dry	Bulb	Temp: 22.6	°C Wet	Bulb	Temp: 6.4	°C Humidity:	50.2	%

Wind	Speed:		0.85	m/s Wind Gusts:	4.72	m/s Solar	Irr: 552.5	W/m2

HDD:	1.8 Wind	Dir:	36°E CDD:	0.6

It	is	either a	Tuesday	or	
Thursday

Time	is	between	1300-
1600	hrs

July	
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What	I	do..
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Modeling

Control

Optimization

Implementation

Safety



Closing	the	CPS	loop	with	data	

Plant/System

Decision

Measurement

Cyber Physical
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Model

Controller

Communication



‘All	models	are	wrong,	but	some	are	useful.’
- George	E.P.	Box

madhur.behl@virginia.edu
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