

Data Predictive Control for Cyber-Physical Systems

Madhur Behl

Assistant Professor Computer Science, Systems and Information Engineering

Tea Time In Britain

Peaks occur during major sporting events

how	many pe	ople watch	Ŷ	, Q			
All	News	Images	Maps	Videos	More	Settings	Tools
Abou	t 2,060,000	results (0.75	seconds)				

111 million people

More than **111 million people** watched Super Bowl LI. Feb 6, 2017

SCIENTIFIC AMERICAN

English v Cart O Sign In |

EDUCATION VIDEO PODCAST

2014 Officially Hottest Year on Record

R	ı	в	Е	
	•	-	-	

SCIENTIFIC AMERICAN.

English ~ Cart 0

CATION

2015 Is Officially the Hottest Year on Record

SCIENTIFIC

AMERICAN

English v Cart 0

SCIENCES VIDEO EDUCATION PODCASTS ST

2016 Was the Hottest Year on Record

Price Volatility: Summer peak

\$800 \$700 \$600 \$500 Price \$400 **32x!** \$300 \$200 \$100 \$0 16:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 17:00 07/20/15 07/20/15 07/20/15 07/20/15 07/20/15 07/20/15 07/20/15 07/20/15 07/20/15 07/20/15 Display Data Points DEOK COMED EKPC PS PEP DOM BC AEP

20th, July 2015

Price Volatility: Winter peak

Nominal price: \$31.21/MWh

Peak Price: \$2,680.21/MWh

Price volatility is the new normal

PJM (ISO) Locational Marginal Prices (LMPs) example

8

"All kilowatts are not created equally"

Demand Response Event

Demand Response – Looks familiar

This Flight is Scheduled To Be Full Passengers Interested in Volunteering For Compensation Please Advise The Check-in Representative

VOLUNTEERS ARE NEEDED

NYC-KENNEDY, NY > LOS ANGELES, CA 29 JUN 2014

Do you want to be added to the volunteer list for your flight departing from NYC-Kennedy, NY to Los Angeles, CA? We are seeking volunteers willing to take a different flight in exchange for a travel voucher redeemable within 1 year on delta.com.

NO THANKS

Your existing itinerary will not be changed until you review alternate flights at the departure gate.

Select the dollar value of the travel voucher you would accept as compensation for volunteering your seat. **Note:** If your seat is needed, you will receive a travel voucher for this amount.

Demand response challenges

Q) What is the best change that you can make right now?

Model-based predictive control (MPC)

Model Predictive Control (MPC)

Model Predictive Control (MPC)

- \rightarrow Determine state x(t)
 - Determine optimal sequence of inputs over horizon
 - Implement first input *u*(*t*)
 - Wait for next sampling time; *t*:= *t* +1

The control problem in buildings

Integrated control of:

- Heating
- Cooling
- Ventilation
- Lighting
- Blinds

Model-based predictive control for buildings

Q) What is the best change that you can make right now?

How do you build these models?

How are building models obtained today ?

Building energy modeling using first-principles

Building energy modeling using first-principles

Grey-Box (Inverse) Modeling

Black-Box Modeling

Not well aligned with control synthesis

Coarse grained predictions

Non-physical parameters

Modeling using first principles is hard !

Each building design is different. Must be uniquely modeled

Long operational lifetimes ~50-100 years

Too many sub-systems Non-linear interactions

Energy Systems Modeling

Suitability for control

Data-Driven Demand Response

- Can we get the best of both worlds ?
 - Simplicity of rule-based DR
 - Predictive capability of model-based DR

Data-Driven predictive control

Data-Driven predictive control

Data-Driven predictive control

The Netflix of Energy Management Systems

Will a person like the movie 'The Usual Suspects' ?

ritically-acclaimed Witty Comedia

11 00

FARGO

Make Recommendations

ST

Tree construction algorithm: CART

- Split at $X_1 = t_1$
- For $X_1 < t_1$ split at $X_2 = t_2$
- For $X_1 > t_1$ split at $X_1 = t_3$
- For $X_1 > t_3$ split at $X_2 = t_4$

Cell Model: Average

Tree construction algorithm: CART

Tree construction algorithm: CART

Stopping criteria.

 MinLeaf
 Splitting criteria.
 Variable selection.

 Pruning.

$$\min_{j,s} \left[\min_{c_L} \sum_{x_i \in R_L(j,s)} (y_i - c_L)^2 + \min_{c_R} \sum_{x_i \in R_R(j,s)} (y_i - c_R)^2 \right]$$

Weather

	A	В	c
1	Time Of Day	Boiler 1 Outlet SetPoint	Perimeter Bottom 3 ZAT
2	Day of Week	Chiller 1 Outlet SetPoint	Perimeter Bottom 4 ZAT
3	Day of Month	Chiller 2 Outlet SetPoint	Perimeter Mid 1 ZAT
4	Basement Zone Air Temperature	Zone Cooling Set Point	Perimeter Mid 2 ZAT
5	Ground Floor Plenum Temperature	Chilled Water Set Point	Perimeter Mid 3 ZAT
6	Core Bottom Zone Air Temperature	Building Lighting Set Point	Perimeter Mid 4 ZAT
7	Core Mid Zone Air Temperature	Zone Heating Set Point	Perimeter Top 1 ZAT
8	Core Top Zone Air Temperature	Hot Water Set Point	Perimeter Top 2 ZAT
9	Mid Floor Plenum Temperature	Perimeter Bottom 1 ZAT	Perimeter Top 3 ZAT
10	Top Floor Plenum Temperature	Perimeter Bottom 2 ZAT	Perimeter Top 4 ZAT
11	Outdoor Dry Bulb Temperature	Outdoor Humidity	Wind Speed
12	Wind Direction	Incident Solar Irradiation	Building Power Consumption

Proxy Variables

	A	В	C
1	Time Of Day	Boiler 1 Outlet SetPoint	Perimeter Bottom 3 ZAT
2	Day of Week	Chiller 1 Outlet SetPoint	Perimeter Bottom 4 ZAT
3	Day of Month	Chiller 2 Outlet SetPoint	Perimeter Mid 1 ZAT
4	Basement Zone Air Temperature	Zone Cooling Set Point	Perimeter Mid 2 ZAT
5	Ground Floor Plenum Temperature	Chilled Water Set Point	Perimeter Mid 3 ZAT
6	Core Bottom Zone Air Temperature	Building Lighting Set Point	Perimeter Mid 4 ZAT
7	Core Mid Zone Air Temperature	Zone Heating Set Point	Perimeter Top 1 ZAT
8	Core Top Zone Air Temperature	Hot Water Set Point	Perimeter Top 2 ZAT
9	Mid Floor Plenum Temperature	Perimeter Bottom 1 ZAT	Perimeter Top 3 ZAT
10	Top Floor Plenum Temperature	Perimeter Bottom 2 ZAT	Perimeter Top 4 ZAT
11	Outdoor Dry Bulb Temperature	Outdoor Humidity	Wind Speed
12	Wind Direction	Incident Solar Irradiation	Building Power Consumption

Schedule/Set-Point

1	A	В	C
1	Time Of Day	Boiler 1 Outlet SetPoint	Perimeter Bottom 3 ZAT
2	Day of Week	Chiller 1 Outlet SetPoint	Perimeter Bottom 4 ZAT
3	Day of Month	Chiller 2 Outlet SetPoint	Perimeter Mid 1 ZAT
4	Basement Zone Air Temperature	Zone Cooling Set Point	Perimeter Mid 2 ZAT
5	Ground Floor Plenum Temperature	Chilled Water Set Point	Perimeter Mid 3 ZAT
6	Core Bottom Zone Air Temperature	Building Lighting Set Point	Perimeter Mid 4 ZAT
7	Core Mid Zone Air Temperature	Zone Heating Set Point	Perimeter Top 1 ZAT
8	Core Top Zone Air Temperature	Hot Water Set Point	Perimeter Top 2 ZAT
9	Mid Floor Plenum Temperature	Perimeter Bottom 1 ZAT	Perimeter Top 3 ZAT
10	Top Floor Plenum Temperature	Perimeter Bottom 2 ZAT	Perimeter Top 4 ZAT
11	Outdoor Dry Bulb Temperature	Outdoor Humidity	Wind Speed
12	Wind Direction	Incident Solar Irradiation	Building Power Consumption

Building's State

	A	В	C
1	Time Of Day	Boiler 1 Outlet SetPoint	Perimeter Bottom 3 ZAT
2	Day of Week	Chiller 1 Outlet SetPoint	Perimeter Bottom 4 ZAT
3	Day of Month	Chiller 2 Outlet SetPoint	Perimeter Mid 1 ZAT
4	Basement Zone Air Temperature	Zone Cooling Set Point	Perimeter Mid 2 ZAT
5	Ground Floor Plenum Temperature	Chilled Water Set Point	Perimeter Mid 3 ZAT
6	Core Bottom Zone Air Temperature	Building Lighting Set Point	Perimeter Mid 4 ZAT
7	Core Mid Zone Air Temperature	Zone Heating Set Point	Perimeter Top 1 ZAT
8	Core Top Zone Air Temperature	Hot Water Set Point	Perimeter Top 2 ZAT
9	Mid Floor Plenum Temperature	Perimeter Bottom 1 ZAT	Perimeter Top 3 ZAT
10	Top Floor Plenum Temperature	Perimeter Bottom 2 ZAT	Perimeter Top 4 ZAT
11	Outdoor Dry Bulb Temperature	Outdoor Humidity	Wind Speed
12	Wind Direction	Incident Solar Irradiation	Building Power Consumption

DR Strategy Evaluation

	Wind	Da	y Of Week	Chille	ed Water T	emp. 7	Zone Temp	perature	
	ೈ	╚	17	ရုံရ	Ling	Ť	°C		
hidity	Time	of Day		Schedu	ıle	Lighting	Dry	Bulb	
			E.						
-		Time () Of Day		Boiler	1 Outlet S	etPoint	Per	imeter Bottom 3 7AT
2		Day of Week				Chiller 1 Outlet SetPoint		Per	imeter Bottom 4 ZAT
3		Day of Month				2 Outlet	SetPoint	P	erimeter Mid 1 ZAT
4	Baseme	Basement Zone Air Temperature				Cooling Se	t Point	P	erimeter Mid 2 ZAT
5	Ground F	Ground Floor Plenum Temperature				d Water S	et Point	P	erimeter Mid 3 ZAT
6	Core Bot	Core Bottom Zone Air Temperature			Building Lighting Set Point			P	erimeter Mid 4 ZAT
7	Core M	Core Mid Zone Air Temperature			Zone	Heating Se	et Point	P	erimeter Top 1 ZAT
8	Core To	Core Top Zone Air Temperature				Water Set	Point	P	erimeter Top 2 ZAT
9	Mid Flo	Mid Floor Plenum Temperature			Perim	eter Botto	m 1 ZAT	P	erimeter Top 3 ZAT
10	Top Flo	Top Floor Plenum Temperature			Perim	eter Botto	m 2 ZAT	P	erimeter Top 4 ZAT
11	Outdoo	Outdoor Dry Bulb Temperature			Out	tdoor Hum	hidity		Wind Speed
12	Wind Direction				Incide	nt Solar Irr	adiation	Buildi	ng Power Consumption

Power (kW)

Auto regressive trees: For Finite horizon prediction

ART(δ) $\hat{Y}(t+1) = f([X_1(t), X_2(t), \dots, X_m(t), Y(t-1), Y(t-2), \dots, Y(t-\delta)])$

Demand Response Challenges

What is the best change that you can make right now?

Regression trees for **control synthesis**

Regression trees for control synthesis

Time Of Day Day of Week Day of Month Basement Zone Air Temperature Ground Floor Plenum Temperature Core Bottom Zone Air Temperature Core Mid Zone Air Temperature Core Top Zone Air Temperature Mid Floor Plenum Temperature Top Floor Plenum Temperature Outdoor Dry Bulb Temperature Wind Direction Boiler 1 Outlet SetPoint Chiller 1 Outlet SetPoint Chiller 2 Outlet SetPoint **Zone Cooling Set Point ? Chilled Water Set Point ? Building Lighting Set Point ?** Zone Heating Set Point Hot Water Set Point Perimeter Bottom 1 ZAT Perimeter Bottom 2 ZAT Outdoor Humidity Incident Solar Irradiation Perimeter Bottom 3 ZAT Perimeter Bottom 4 ZAT Perimeter Mid 1 ZAT Perimeter Mid 2 ZAT Perimeter Mid 3 ZAT Perimeter Mid 4 ZAT Perimeter Top 1 ZAT Perimeter Top 2 ZAT Perimeter Top 3 ZAT Perimeter Top 4 ZAT Wind Speed Building Power Consumption

Regression trees for control synthesis

Separation of variables

Separation of variables

Fit a linear model on \mathbb{Y}_{R_i} , \mathbb{X} in the leaf

Fit a linear model on $\mathbb{Y}_{R_i}, \mathbb{X}_c$ in the leaf

mbCRT: Model Based Control with Regression Trees

1:	DESIGN TIME
2:	procedure MODEL TRAINING
3:	Separation of Variables
4:	Set $\mathbb{X}_c \leftarrow$ Controllable Features
5:	Set $\mathbb{X}_d \leftarrow$ Uncontrollable Features
6:	Build the uncontrollable tree T_{mrt} with \mathbb{X}_d
7:	for all Regions R_i at the leaves of T_{mrt} do
8:	Fit linear model $Y_{Ri} = \beta_{0,i} + \beta_i^T \mathbb{X}_c$
9:	end for
10:	end procedure
11:	Run Time
12:	procedure CONTROL SYNTHESIS
13:	At time t obtain forecast $\mathbb{X}_d(t+1)$ of disturbances
	$\hat{X_{d1}}(t+1), \hat{X_{d2}}(t+1), \cdots$
14:	Using $\hat{\mathbb{X}}_d(t+1)$ determine the leaf and region R_{rt}
15:	for Region R_{rt} do
16:	Solve optimization in Eq11 for optimal control
	action $\mathbb{X}_{c}^{*}(t)$
17:	end for
18:	end procedure

 $\begin{array}{ll} \underset{\mathbb{X}_{c}}{\text{minimize}} & f(Y_{Ri}) \\ \text{subject to} & Y_{Ri} = \beta_{0,i} + \beta_{i}^{T} \mathbb{X}_{c} \\ & \mathbb{X}_{c} \in \mathbb{X}_{safe} \end{array}$

46

[During a Demand Response Event]

[During a Demand Response Event]

[During a Demand Response Event]

1 Disturbance forecast

Real time optimization [with dynamical constraints]

DR Strategy Synthesis

Sustained response of 380 kW

DR Strategy Synthesis

DR Strategy Synthesis

Different zone priorities

Foundations of Data Predictive Control for CPS

Foundations of Data Predictive Control for CPS

- ICCPS '16, BuildSys 15, CISBAT 15, Journal of Applied Energy

Best Paper Award (SRC TECHCON-IoT):
'Sometimes, Money Does Grow on Trees'
Ph.D. Dissertation: Madhur Behl, UPenn (2016)

- ACM BuildSys 16 (Best Presentation Award)
- ACM Transactions of Cyber Physical Systems.

Finite receding horizon [with ensemble models]

 American Control Conference
 17 (Best Energy Systems Paper Award)

Demand Response Recommendation System

Prediction Accuracy

Madhur Behl - madhur.behl@virginia.edu

Sometimes, Money Does Grow On Trees.

6 floor building U. L'Aquila, Italy

2016 DOE CLEANTECH Prize NSF SBIR small business.

\$ 45,600 in 4 months

Storm water Flooding – Transportation Modeling

Data Predictive Control for Cyber-Physical Systems

Modeling for predictive control is cost and time prohibitive!

Operator in the loop

Interpretable Regression Tree models

Interactive Analytics

What is happening?

Data discovery and exploration

Why did it happen?

Reporting and analysis

What could happen?

Predictive analytics and modeling

What action to take?

Decisions and recommendations

(Q) Under what conditions does Rice Hall consume > 75 kW?

(A) Rice Hall consumes > 75 kw when:

Dry Bulb Temp: 22.6 °C	Wet Bulb Temp: 6.4 °C	Humidity: 50.2 %
Wind Speed: 0.85 m/s	Wind Gusts: 4.72 m/s	Solar Irr: 552.5 W/m ²
HDD: 1.8	Wind Dir: 36°E	CDD: 0.6
It is either a Tuesday or Thursday	Time is between 1300- 1600 hrs	July

System Operator/ Facilities Manager

Madhur Behl - madhur.behl@virginia.edu

What I do..

Cyber-Physical Energy Systems

Critical Infrastructures & Smart Cities

Medical Cyber-Physical Systems

Automotive Cyber-Physical Systems

Closing the CPS loop with data

'All models are wrong, but some are useful.'

- George E.P. Box

madhur.behl@virginia.edu