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Cause Effect

What does this arrow 
represent?
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is there?
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Causal Discovery

A. Peter Spirtes & Clark Glymour (PC) algorithm
◦ Causal network learning algorithm

B. PC & Momentary Conditional Independence (PCMCI)
◦ Extension to PC to handle false positives & high dimensionality

C. Fast Causal Inference (FCI) algorithm
◦ Generalization of  PC that does not require Causal Sufficiency

D. LiNGAM
◦ For identifying Linear, Non-Gaussian, Acyclic causal Models 

based on purely observational, continuous-valued data
◦ Structural Equation/Causal Modeling (SEM or SCM)

E. Convergent cross mapping
◦ Uses Taken’s theorem of  Lorenz attractors to deconstruct a 

dynamical system’s state space and infer causal pairs.

13

E.

A.

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat 
Commun 10, 1 (2019). DOI:https://doi.org/10.1038/s41467-019-10105-3 



Causal Discovery

A. Peter Spirtes & Clark Glymour (PC) algorithm
◦ Causal network learning algorithm

B. PC & Momentary Conditional Independence (PCMCI)
◦ Extension to PC to handle false positives & high dimensionality

C. Fast Causal Inference (FCI) algorithm
◦ Generalization of  PC that does not require Causal Sufficiency

14

A.

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat 
Commun 10, 1 (2019). DOI:https://doi.org/10.1038/s41467-019-10105-3 

Independence/Constraint-Based Causal Network Learning



Independence-Based Causal Discovery

Assumptions for independence-based causal discovery:

Causal Sufficiency: there are no unobserved confounders of  any variables in the graph

Markov Assumption: 𝑋 ⫫! Y | Z ⟹ 𝑋 ⫫" 𝑌|𝑍
◦ If  X and Y are independent in a graph, G, given Z, then they must be statistically independent in their joint 

probabilities, given Z.

Faithfulness: 𝑋 ⫫! Y | Z ⟸ 𝑋 ⫫" 𝑌|𝑍
◦ If  X and Y statistically independent in their joint probabilities, given Z, then they must be independent in the 

graph, G, conditioned on Z.

Acyclicity: assume there are no cycles in the graph
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Independence-Based Causal Discovery

Markov Equivalence Classes

Chains and forks encode the same independencies:

𝑋 ⫫ Y and Y⫫ Z

𝑋 ⫫ Z

𝑋 ⫫ Z | Y
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Independence-Based Causal Discovery

Markov Equivalence Classes

𝑋 ⫫ Y and Y⫫ Z

𝑋 ⫫ Z

𝑋 ⫫ Z | Y
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Independence-Based Causal Discovery

Markov Equivalence Classes

Colliders encode a unique independence relationship:

𝑋 ⫫ Z X is independent of  Z, conditional on nothing

𝑋 ⫫ Z | Y

𝑋 ⫫ Y and Y⫫ Z

𝑋 ⫫ Z

𝑋 ⫫ Z | Y
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Independence-Based Causal Discovery

𝑋 ⫫ Z | Y
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Independence-Based Causal Discovery

𝑋 ⫫ Z | Y
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Independence-Based Causal Discovery

𝑋 ⫫ Z | Y
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Markov equivalence can be found 
via colliders and skeletons

Theorem: two graphs are Markov 
equivalent if and only if they have 
the same skeleton and the same 
colliders (Verma and Pearl, 1990; 
Frydenburg, 1990)



PC Algorithm Overview24

C

BA

ED

Ground Truth



PC Algorithm Overview25

C

BA

ED

Ground Truth

C

BA

ED

1. Initial Graph



PC Algorithm Overview26

C

BA

ED

Ground Truth

C

BA

ED

1. Initial Graph

C

BA

ED

2. Skeleton Identification



PC Algorithm Overview27

C

BA

ED

Ground Truth

C

BA

ED

1. Initial Graph

C

BA

ED

2. Skeleton Identification

C

BA

ED

3. Detect Colliders



PC Algorithm Overview28

C

BA

ED

Ground Truth

C

BA

ED

1. Initial Graph

C

BA

ED

2. Skeleton Identification

C

BA

ED

3. Detect Colliders

C

BA

ED

4. Orientation



Causal Discovery29

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat 
Commun 10, 1 (2019). DOI:https://doi.org/10.1038/s41467-019-10105-3 



Impacts:
Significant greenhouse gas 

release; changes in hydrology; 
increased erosion

Impacts:
Regional cooling; 

significant weather shifts 
in the N. hemisphere

Impacts:
Mid-latitude weather 

changes; ocean current 
alterations

Permafrost 
Thaw

Loss of  
Summer Sea Ice

Shutdown of  Atlantic 
Thermohaline 

Circulation
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Observed Stationary Timeseries

Results

Steps

• Preprocessing
• Create a time series of  each variable
• Timeseries stationarity is needed because the 

algorithm must assume that deviations from 
the mean/variance are due to internal 
influences rather than some external 
seasonality or long-term trend

• Transform time series to make them all 
stationary

• Parameterization Tuning
• Choose a maximum lag to include
• Choose the alpha significance threshold for 

independence tests

• Causal Network Learning
• Fit the PCMCI [1] causal discovery algorithm 

to each dataset
• Analyze resultant networks

32

[1]Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. 2019. Detecting and quantifying 
causal associations in large nonlinear time series datasets. Retrieved from http://advances.sciencemag.org/



Results

The 𝐹# Score is a similarity metric computed from existence of  
edges in a pair of  networks

Future work includes more metrics:

• Some node-node similarity metrics
• Node-node 𝐹! Score 
• Others

• Node level metrics will identify where the differences occur 
and more meaningful inferences may be possible

• An average goodness of  fit score for each network
• Each edge has a goodness of  fit and a significance value to 

determine if  it should exist in the network
• Combining these could be a good metric for overall fit

• Apply FCI and LPCMCI
• Tolerance for latent or unobserved variables
• Can sometimes discover latent variables
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Backups



Causal Inference



Causal Inference
Judea Pearl’s three levels of  causation

1. Seeing – associate quantities

§ What most animals and machines do

§ What if  X happens?

§ Prediction

2. Doing – changing quantities

§ Deliberate intervention/experimentation in a 
process

§ What if  I do X?

3. Imagining – retrospective analysis and 
understanding

§ Counterfactual analysis

§ What if  I had done Y? Why did Z occur?
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Judea Pearl’s Ladder of Causation. Illustrator: Maayan Hare 



What does imply causation?



Causal Inference

Randomized Control Trials

1. Take one sample population
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2. Randomly divide them up into 
a treatment group and a 
control group
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Causal Inference

Randomized Control Trials

1. Take one sample population

2. Randomly divide them up into 
a treatment group and a 
control group

§ Treatment is applied at random

§ Confounding variables of  
individuals will not appear in the 
average treatment effect (ATE)
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Causal Inference42

Treatment T
Common Cause X
Potential Outcome Y

RCTs: experimenter randomizes subjects into 
control and treatment groups.

§ Treatment group cannot have causal parents

§ The groups are then comparable
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Causal Inference - Observational Studies44

The solution is to adjust or control for confounders

X

T Y

Confounding Association

Causal Association



Causal Inference - Observational Studies45

The solution is to adjust or control for confounders

If a set of variables, W, is a sufficient adjustment set, then we can block the confounding association and expose the 
causal association.

X

T Y

Confounding Association

Causal Association

Shaded represents conditioning on the set of variables, W
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Helpful Resources

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat Commun 10, 1 (2019). 
DOI:https://doi.org/10.1038/s41467-019-10105-3 

The Book of  Why by Judea Pearl, Dana Mackenzie

Brady Neal – Causal Inference

CauseMe.net – Runge et al.

Ø“The CauseMe platform provides
ground truth benchmark datasets
featuring different real data
challenges to assess and compare
the performance of  causal discovery
methods.”
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https://causeme.net/

