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Causal Discovery ® |

Peter Spirtes & Clark Glymour (PC) algorithm

Skeleton discovery phase

Causal network learning algorithm p=1
-2 t-1  t R
PC & Momentary Conditional Independence (PCMCI) w .. ? 4 ® i
Extension to PC to handle false positives & high dimensionality e \W\\\¢ C O

Fast Causal Inference (FCI) algorithm ™9

Generalization of PC that does not require Causal Sufficiency

LINGAM

For identifying Linear, Non-Gaussian, Acyclic causal Models
based on purely observational, continuous-valued data

Structural Equation/Causal Modeling (SEM or SCM)

Convergent cross mapping

Uses Taken’s theorem of lLorenz attractors to deconstruct a

dynamical system’s state space and infer causal pairs.
(X(t), X(t-d), X(t-2d)) (Y(t), Y(t-d), Y(t-2d))

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat

Commun 10, | (2019). DOl:https://doi.org/10.1038/s41467-019-10105-3
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Independence/Constraint-Based Causal Network Learning

A.  Peter Spirtes & Clark Glymour (PC) algorithm A. Shikotcr ecomry ohoss Orlordadion bhase

> Causal network learning algorithm

-2 -1

B. PC & Momentary Conditional Independence (PCMCI)
> Extension to PC to handle false positives & high dimensionality

C. Fast Causal Inference (FCI) algorithm

> Generalization of PC that does not require Causal Sufficiency

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat

Commun 10, | (2019). DOl:https://doi.org/10.1038/s41467-019-10105-3



Independence-Based Causal Discovery ® |

Assumptions for independence-based causal discovery:

Causal Sufficiency: there are no unobserved confounders of any variables in the graph

Markov Assumption: X g Y|Z = X lp Y|Z

If X and Y are independent in a graph, G, given Z, then they must be statistically independent in their joint
probabilities, given Z.

Faithfulness: X g Y|Z & X Lp Y|Z

If X and Y statistically independent in their joint probabilities, given Z, then they must be independent in the "
graph, G, conditioned on Z.

Acyclicity: assume there are no cycles in the graph
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Markov Equivalence Classes

Chains and forks encode the same independencies:

XAYand YA Z

XHZ
XLZ|Y
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Markov Equivalence Classes
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Markov Equivalence Classes

Colliders encode a unique independence relationship:

X I Z Xisindependent of Z, conditional on nothing
XHXZ|Y

XAY and YA Z

XM7 i

XULZ|Y
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Markov Equivalence Classes

XHAZ Xisindependent of Z, conditional on nothing
XLZ|Y |

XHAY and YA Z
XX7 i
XLZ|Y
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Independence-Based Causal Discovery

XLZ|Y
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Independence-Based Causal Discovery

XUZ|Y XLZ|Y
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XUZ|Y XLZ|Y |

Markov equivalence can be found
via colliders and skeletons

Theorem: two graphs are Markov
equivalent if and only if they have
the same skeleton and the same

colliders (Verma and Pearl, 1990;
Frydenburg, 1990) :
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PC Algorithm Overview

Ground Truth
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PC Algorithm Overview
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PC Algorithm Overview

Ground Truth

| Initial Graph

3. Detect Colliders

2. Skeleton ldentification

4. Orientation



29

Causal Discovery

Causal hypothesis testing

Arctic sub-seasonal variability

Pacific synoptic to mult-year
varlability

C Exploratory detection of causes of extreme impacts

Correlated
variable

Storm surge '*:.;_

Precipitation

Causal complex network analysis I

0° B0°E 120°E 180" 120°W 60°W

’ 0.00 0.02 0.06
In-/Out—degree Average causal suscepubnllty (mner node color)

Average causal effect (outer ring color)

( 3% 4;4%

Causal model evaluation )

Observed data causal network Model data causal networks
- .® x

Real world processes Modeled processes

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat
Commun 10, | (2019). DOl:https://doi.org/10.1038/s41467-019-10105-3



Daily Global Sea Ice Total Area with Monthly Polar Sea Ice Extent, 1988-2020

Arctic sea ice extent
(Millions km*2)
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Permafrost
Thaw

Impacts:
Significant greenhouse gas
release; changes in hydrology;

increased erosion

Shutdown of Atlantic
Thermohaline
Circulation

Impacts:
Regional cooling;
significant weather shifts

in the N. hemisphere

Loss of
Summer Sea Ice

Impacts:
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changes; ocean current
alterations
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Specific Methodology

Simulated Data
C/ Energy Exascale /
Earth System Model

_

PCMCI Causal
Discovery

PCMCI Causal
Discovery

Causal Graph

Causal Graph

asedwon




32 | Results

Simulation 5

Observed Stationary Timeseries

Steps o | A A A My g A
‘AWWMMWWVWWW%MW-W
Preprocessing o AR A A AT i
Create a time series of each variable
A N Y e A e [ e R g WA
Timeseries stationarity is needed because the |l I IR
algorithm must assume that deviations from oA e AN Mg Ao s AN st oo ,
the mean/variance are due to internal AareAn (on A AN PA S st Aot AR Lt M Simulation 3
influences rather than some external 1] e e e AU N e etV - —
seasonality or long-term trend T L RN Wy Dss ';_;/ff;:"

. S e—

Transform time series to make them all Observed

stationary Simulation 2

1

Parameterization Tuning
Choose a maximum lag to include

Choose the alpha significance threshold for
independence tests

Causal Network Learning

Fit the PCMCI [1] causal discovery algorithm
to each dataset

Analyze resultant networks

[1]Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. 2019. Detecting and quantifying
causal associations in large nonlinear time series datasets. Retrieved from http://advances.sciencemag.org/
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Results

The F; Score is a similarity metric computed from existence of
edges in a pair of networks

F, Scores

Future work includes more metrics: v

Some node-node similarity metrics
Node-node F; Scote
Others

Node level metrics will identify where the differences occur
and more meaningful inferences may be possible

An average goodness of fit score for each network

Each edge has a goodness of fit and a significance value to
determine 1f it should exist in the network

Combining these could be a good metric for overall fit = |

sim1l sim2 sim3 sim4 sm|15
Apply FCI and I.PCMCI
Tolerance for latent or unobserved variables

Can sometimes discover latent variables
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37 | Causal Inference

Judea Pearl’s three levels of causation

1. Seeing — associate quantities
What most animals and machines do
What if X happens?

Prediction

2. Doing — changing quantities

Deliberate intervention/expetimentation in a
process

What if I do X?

3. Imagining — retrospective analysis and
understanding

Counterfactual analysis

What if I had done Y? Why did Z occur?

I
I

|
\ ===
(=

\
N
' J

AGINING|/
e Ij

—

J
(

“DOING = r'l
1y
)

3. COUNTERFACTUALS
ACTIVITY:  Imagioing, Retrospection, Understandiog

QUESTIONS: ¥
( har if X had not
ed differentlyr)

EXAMPLES: 'm that stopped my headacher

y be altve 1if Oswalk

L

2. INTERVENTION

ACTIVITY:  Doing, Intervening
QUESTIONS: 17t if
(What would ¥

Low can I make Y happen?;

EXAMPLES:  If 1 tuke aspirin, will myv headache be curedr

What if we han cigarettes?

ACTIVITY:  Sceing, Observing
| QUESTIONS:  I¥
F v belel m Y?)
EXAMPLES:  What does a symprom rell me abonr a disease?
rvey rell us about the

clection results?

Judea Pearl’s Ladder of Causation. lllustrator: Maayan Hare
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Causal Inference

Randomized Control Trials

Take one sample population




s . Causal Inference

Randomized Control Trials
Take one sample population

Randomly divide them up into
a treatment group and a
control group

O 0O O O
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Causal Inference

Randomized Control Trials
Take one sample population

Randomly divide them up into
a treatment group and a
control group

Treatment is applied at random

Confounding variables of
individuals will not appear in the
average treatment effect (ATE)

O 0O O O

)

O 0O O O

)
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Causal Inference

Confounding Association

I N - *
Causal Association

RCTs: experimenter randomizes subjects into
control and treatment groups.

Treatment group cannot have causal parents

The groups are then comparable

—
Causal Association



23 | Causal Inference @ |

Observational Studies I

Confounding Association

Causal Association Causal Association
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Causal Inference - Observational Studies

The solution is to adjust or control for confounders

Confounding Association

I . *
Causal Association
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Causal Inference - Observational Studies

The solution is to adjust or control for confounders

If a set of variables, W, is a sufficient adjustment set, then we can block the confounding association and expose the
causal association.

Confounding Association
e

4 e .
/ ° Shaded represents conditioning on the set of variables, W

/

!
4

ﬁ
Causal Association



4 | Causal Discovery

Challenges -5 t-4 t-3 1-2 -1 )

D @B (o]
Process:

Autocorrelation

Time delays

Nonlinear dependencies
Chaotic state-dependence
Different time scales
Noise distributions

Data:

Variable extraction
Unobserved variables
Time subsampling

10 Time aggregation

11 Measurement errors

12 Selection bias

13 Discrete data

14 Dating uncertainties

Computational/statistical:

15 Sample size

16 High dimensionality

17 Uncertainty estimation /

I I n'I‘I‘H |.' l,l 'N ] ' l |'(_|.l‘|‘\ I‘I ‘” B

' | |l|"f. # ' “'|‘| |'|'c'||." \IA\ | ‘ [ :

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat
Commun 10, | (2019). DOI:https://doi.org/10.1038/s41467-019-10105-3
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Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Na? Commun 10, 1 (2019).
DOILhttps://doi.org/10.1038/s41467-019-10105-3

The Book of Why by Judea Pearl, Dana Mackenzie

JUDEA PEARL
WINNER OF THE TURING AWAR

S b DBrady Neal - Causal Inference
Brady Neal — Causal Inference SADELANAMACKENZIE — T ek

fIRLEIsE
CauseMe.net — Runge et al. BOOK OF < YOUTUbe
“The CauseMe platform provides WHY

ground truth benchmark datasets
featuring different real data O

challenges to assess and compare [HE NEW SCIENCE CAUSEM E
the performance of causal discovery OFSCAUSESORDEEE RS

methods.”

A platform to benchmark causal discovery methods



https://causeme.net/

