

Causal Discovery for Climate Science and the Energy Exascale Earth System Model

Presented by

J. Jake Nichol, 1461

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

² What is Causality?

³ What is Causality?

Peter Spirtes Clark Glymour Richard Scheines David Rubin Judea Pearl

Newton's Second Law of Motion

Water plant

Plant grows flowers

Plant bears fruit

8

Fork A C

Causal Discovery

- A. <u>Peter Spirtes & Clark Glymour (PC) algorithm</u>
 - Causal network learning algorithm
- B. PC & Momentary Conditional Independence (PCMCI)
 - Extension to PC to handle false positives & high dimensionality
- C. Fast Causal Inference (FCI) algorithm
 - Generalization of PC that does not require Causal Sufficiency

D. LiNGAM

- For identifying <u>Linear</u>, <u>Non-Gaussian</u>, <u>Acyclic causal Models</u> based on purely observational, continuous-valued data
- Structural Equation/Causal Modeling (SEM or SCM)
- E. Convergent cross mapping
 - Uses Taken's theorem of Lorenz attractors to deconstruct a dynamical system's state space and infer causal pairs.

I4 Causal Discovery

Independence/Constraint-Based Causal Network Learning

- A. Peter Spirtes & Clark Glymour (PC) algorithm
 - Causal network learning algorithm
- B. PC & Momentary Conditional Independence (PCMCI)
 - Extension to PC to handle false positives & high dimensionality
- C. Fast Causal Inference (FCI) algorithm
 - Generalization of PC that does not require Causal Sufficiency

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. *Nat Commun* 10, 1 (2019). DOI:https://doi.org/10.1038/s41467-019-10105-3

Assumptions for independence-based causal discovery:

Causal Sufficiency: there are no unobserved confounders of any variables in the graph

<u>Markov Assumption</u>: $X \perp _{G} Y \mid Z \implies X \perp _{P} Y \mid Z$

• If X and Y are independent in a graph, G, given Z, then they must be statistically independent in their joint probabilities, given Z.

<u>Faithfulness</u>: $X \perp _{G} Y \mid Z \iff X \perp _{P} Y \mid Z$

• If X and Y statistically independent in their joint probabilities, given Z, then they must be independent in the graph, G, conditioned on Z.

<u>Acyclicity</u>: assume there are no cycles in the graph

Markov Equivalence Classes

Chains and forks encode the same independencies:

XXY and YXZ XXZ X II Z Y

Markov Equivalence Classes

Markov Equivalence Classes

Colliders encode a unique independence relationship:

 $X \perp Z$ X is independent of Z, conditional on nothing $X \not\perp Z \mid Y$

Markov Equivalence Classes

²⁰ Independence-Based Causal Discovery

²² Independence-Based Causal Discovery

Markov equivalence can be found via colliders and skeletons

<u>Theorem</u>: two graphs are Markov equivalent if and only if they have the same skeleton and the same colliders (Verma and Pearl, 1990; Frydenburg, 1990)

25 PC Algorithm Overview

29 Causal Discovery

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. *Nat Commun* 10, 1 (2019). DOI:https://doi.org/10.1038/s41467-019-10105-3

Daily Global Sea Ice Total Area with Monthly Polar Sea Ice Extent, 1988-2020

Twitter: @tylermorganwall

Data Source: NSIDC

31 Specific Methodology

32 **Results**

Steps

• Preprocessing

- Create a time series of each variable
- Timeseries stationarity is needed because the algorithm must assume that deviations from the mean/variance are due to internal influences rather than some external seasonality or long-term trend
- Transform time series to make them all stationary
- Parameterization Tuning
 - Choose a maximum lag to include
 - Choose the alpha significance threshold for independence tests
- Causal Network Learning
 - Fit the PCMCI [1] causal discovery algorithm to each dataset
 - Analyze resultant networks

[1]Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. 2019. Detecting and quantifying causal associations in large nonlinear time series datasets. Retrieved from http://advances.sciencemag.org/

33 **Results**

The F_1 Score is a similarity metric computed from existence of edges in a pair of networks

Future work includes more metrics:

- Some node-node similarity metrics
 - Node-node *F*₁ Score
 - Others
- Node level metrics will identify where the differences occur and more meaningful inferences may be possible
- An average goodness of fit score for each network
 - Each edge has a goodness of fit and a significance value to determine if it should exist in the network
 - Combining these could be a good metric for overall fit
- Apply FCI and LPCMCI
 - Tolerance for latent or unobserved variables
 - Can sometimes discover latent variables

Backups

Judea Pearl's three levels of causation

- 1. Seeing associate quantities
- What most animals and machines do
- What if X happens?
- Prediction
- 2. Doing changing quantities
- Deliberate intervention/experimentation in a process
- What if I do X?
- 3. Imagining retrospective analysis and understanding
- Counterfactual analysis
- What if I had done Y? Why did Z occur?

What does imply causation?

Randomized Control Trials

1. Take one sample population

Randomized Control Trials

- 1. Take one sample population
- 2. Randomly divide them up into a treatment group and a control group

Randomized Control Trials

- 1. Take one sample population
- 2. Randomly divide them up into a treatment group and a control group
- Treatment is applied at random
- Confounding variables of individuals will not appear in the <u>average treatment effect (ATE)</u>

Confounding Association

TreatmentTCommon CauseXPotential Outcome Y

- RCTs: experimenter randomizes subjects into control and treatment groups.
 - Treatment group cannot have causal parents
 - The groups are then comparable

Observational Studies

Confounding Association

Causal Association

44 Causal Inference - Observational Studies

The solution is to <u>adjust</u> or <u>control</u> for confounders

Causal Association

45 Causal Inference - Observational Studies

The solution is to <u>adjust</u> or <u>control</u> for confounders

If a set of variables, W, is a sufficient adjustment set, then we can block the confounding association and expose the causal association.

46 Causal Discovery

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. *Nat Commun* 10, 1 (2019). DOI:https://doi.org/10.1038/s41467-019-10105-3

47 Helpful Resources

Jakob Runge, et al. 2019. Inferring causation from time series in Earth system sciences. Nat Commun 10, 1 (2019). DOI:https://doi.org/10.1038/s41467-019-10105-3

The Book of Why by Judea Pearl, Dana Mackenzie

Brady Neal – Causal Inference

<u>CauseMe.net</u> – Runge et al.

➤ "The CauseMe platform provides ground truth benchmark datasets featuring different real data challenges to assess and compare the performance of causal discovery methods."

