A Giant Leap

Photonic computing is here to take us *there*

- ^{o1} Motivation: Challenges for electronics
- ^{o2} **Opportunity:** Al acceleration with GEMM
- ^{o3} Accelerating AI with photonics
- ⁰⁴ Looking ahead

Challenges for electronics

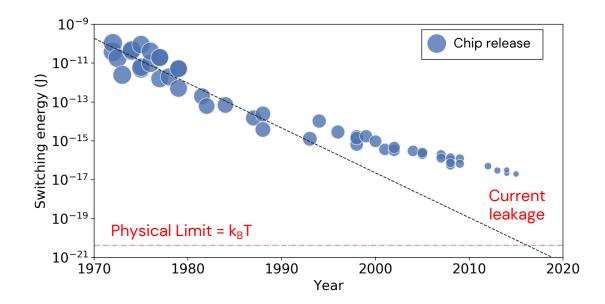
//

Moore's Law lasted for half a century and changed the world as Moore predicted in his 1965 article, but it has ended.

David Patterson Google, UC Berkeley Turing Award Laureate

Heat

How transistor scaling and our universe ends

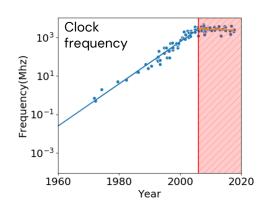


Implications

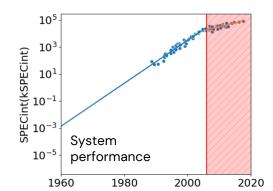
For future electronics

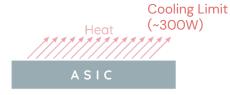
Clock saturation:

Your processors aren't getting much faster.



Your computers aren't performing better over time.





Dark silicon:

You can't use the whole processor at once (without burning it).

Stacking multiple chips is prohibitive because the processors are too hot.

Al compute requirements

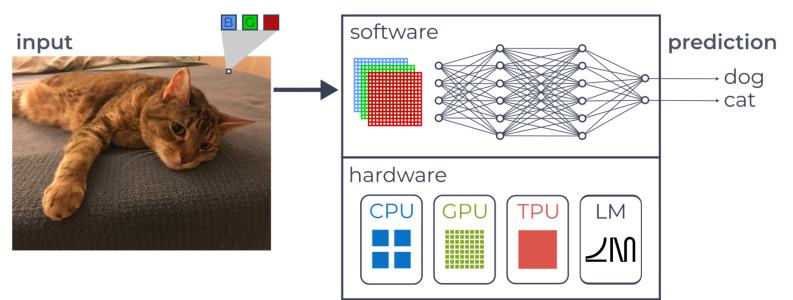
5x the doubling rate of Moore's law

"Cover the planet in datacenters to power Al?"

Source: https://openai.com/blog/ai-and-compute/

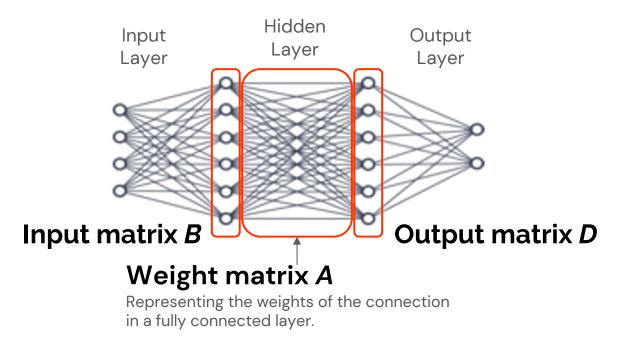
Al acceleration with GEMM

Deep neural networks



General matrix multiply (GEMM)

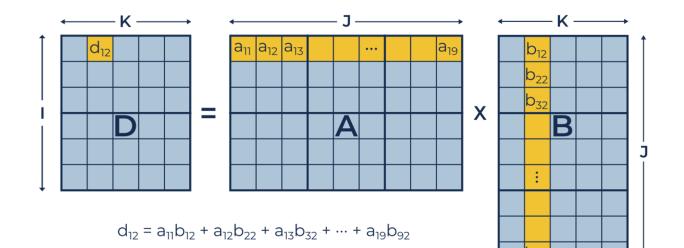
in deep learning



 $D \leftarrow A \times B + C$

General matrix multiply (GEMM)

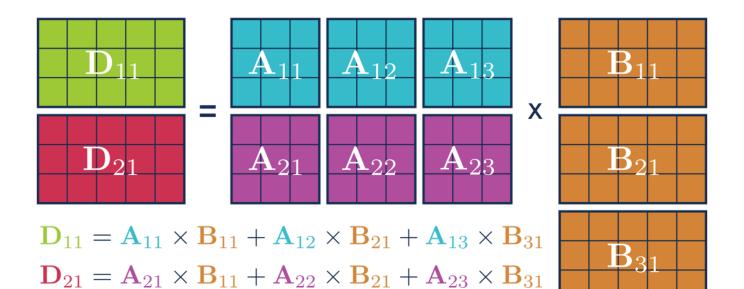
element-by-element



bar

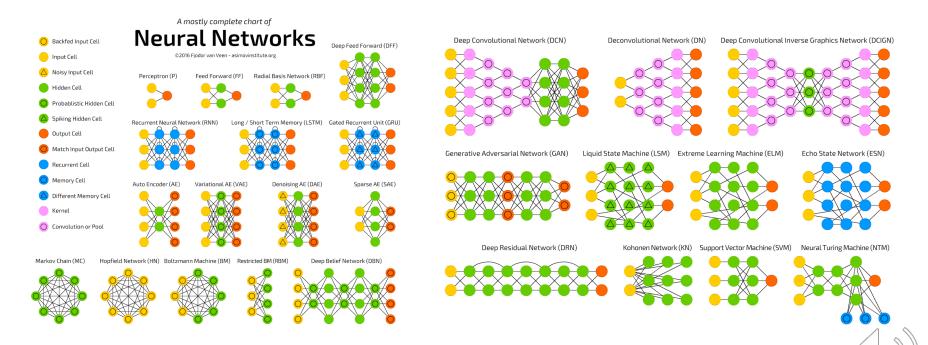
General matrix multiply (GEMM)

tile-by-tile



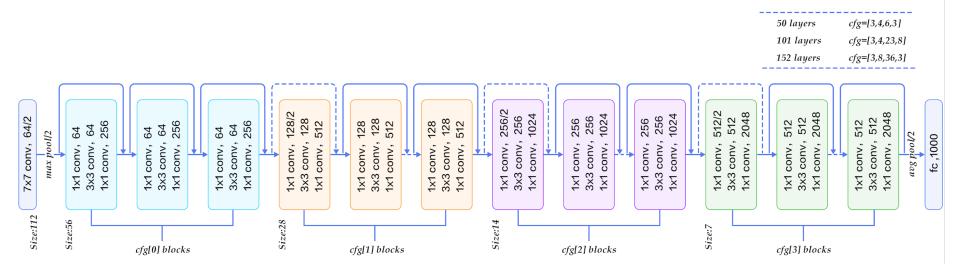
GEMM is universal

in neural networks



ResNet

A state-of-the-art convolutional neural network (CNN)



Convolution and fully connected layers are linear operations that can be processed with GEMM.

14

Google Tensor Processing Unit (TPU)

A systolic array for GEMM

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ramindner Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adrinan Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon Google, Inc., Mountain View, CA USA jouppi@gogle.com

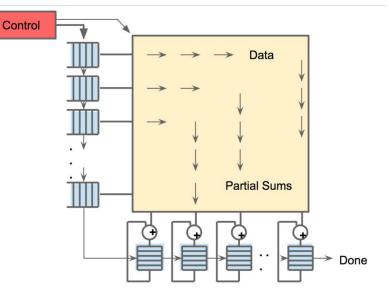
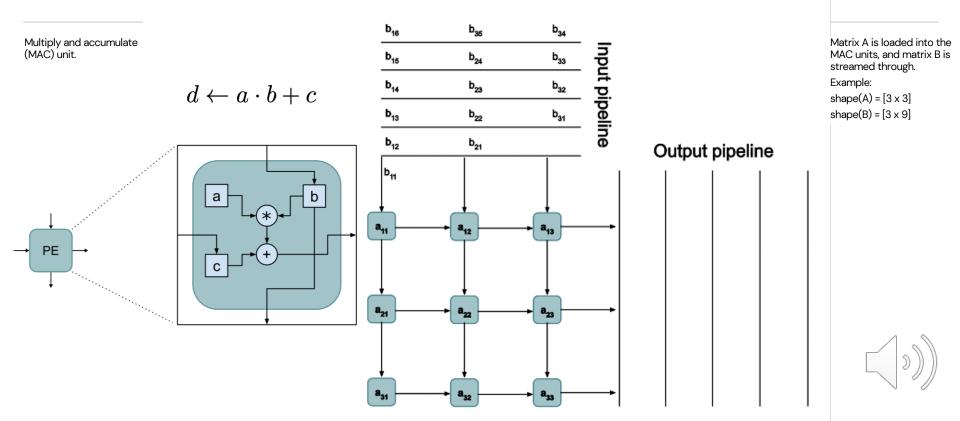


Figure 4. Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs.

Systolic array multiplier

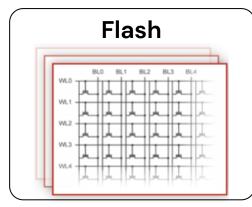
A small example



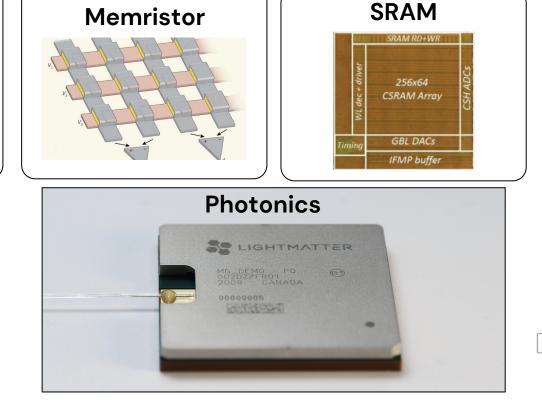
Accelerating Al with photonics

Analog computation

A zoo of GEMM accelerators

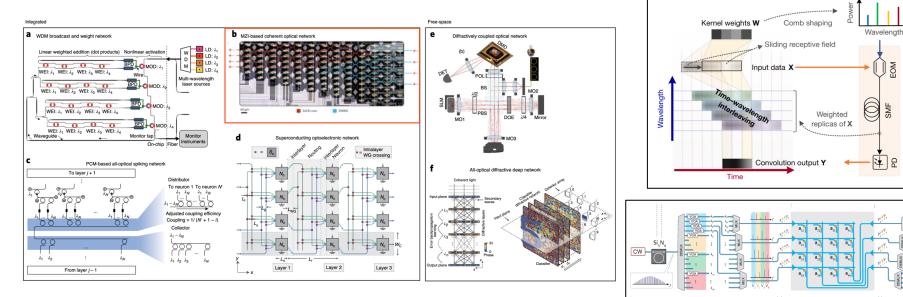


A. Biswas et al., JSSC 54, 217-230 (2018). S. Ambrogio et al., Nature 558, 60-67 (2018). D. Fick et al., Hot Chips (2018).



Computation with photonics

A zoo of photonic GEMM accelerators



Reviews:

- B.J. Shastri, et al. Nat. Photonics 15, 102–114 (2021)
- G. Wetzstein, et al. Nature 588, 39–47 (2020)

Recent works:

- X. Xu, et al. Nature 589, 44–51 (2021)
- J. Feldmann, et al. Nature 589, 52–58 (2021)

VCA

Photonic '

Demultiplexing, DSP

200

On-chip MAC unit

195

Microcomb-based vector generation and multiplexing

185

190

-Frequency (THz)

ďB

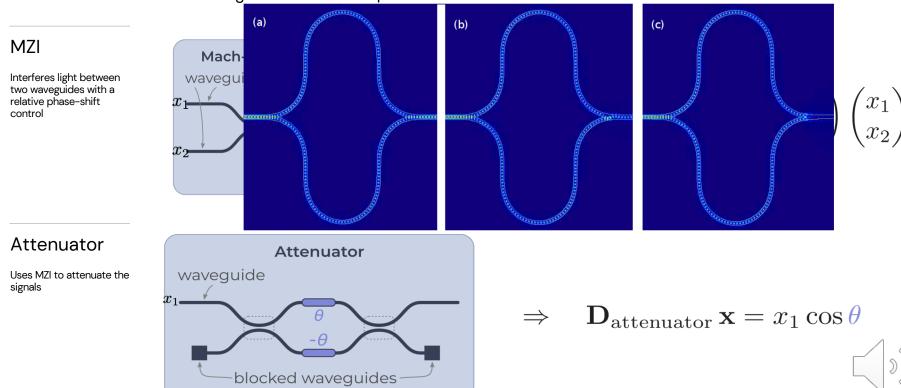
-40

Optica 09-

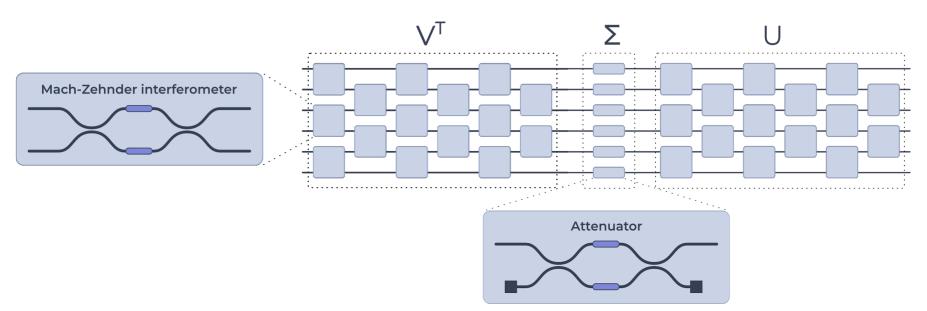
180

Mach-Zehnder Interferometer (MZI)

Basic building blocks for silicon photonics GEMM accelerators



Photonic GEMM accelerator



Singular Value Decomposition

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

N Harris et al, Optica 5, 1623–1631 (2018). WR Clements et al, Optica 3, 1460–1465 (2016). DAB Miller, Photon. Res. 1, 1–15 (2013).

Performance scaling

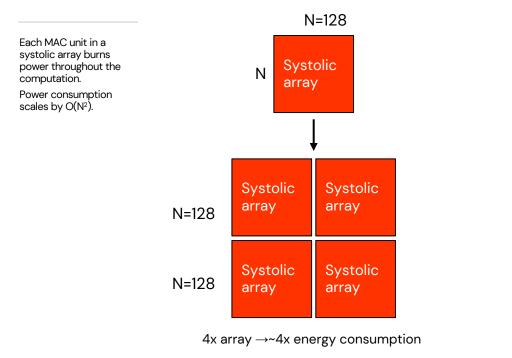
A photonic GEMM multiplier has the same maximum throughput as systolic arrays (e.g., Google TPU)

 $OP/s \approx 2N^2 f_c$

Clock frequency

Energy scaling

Solving the power problem





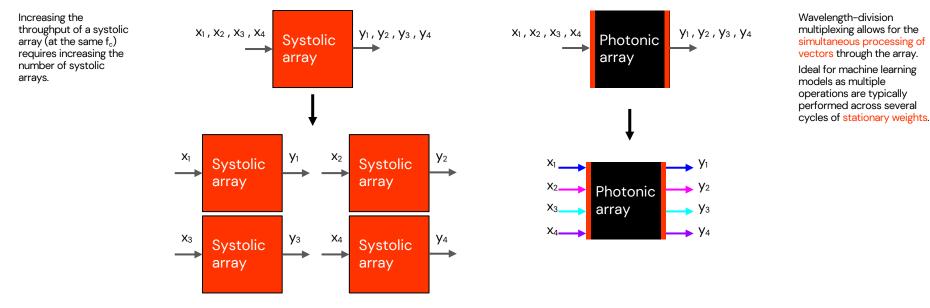
 $4x \operatorname{array} \rightarrow 2x \operatorname{energy} \operatorname{consumption}$

A photonic array mainly only uses input DACs and output ADCs at the edges for its computation.

Power consumption scales by O(N).

Wavelength-division multiplexing

Solving the area and weight reuse problem

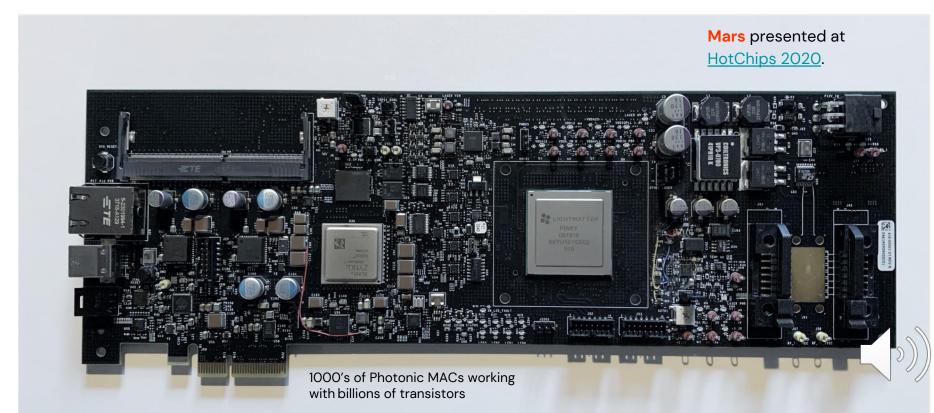


4x throughput \rightarrow ~4x area, no weight reuse

4x throughput \rightarrow -same area, 4x weight reuse

Photonic Computing is Here

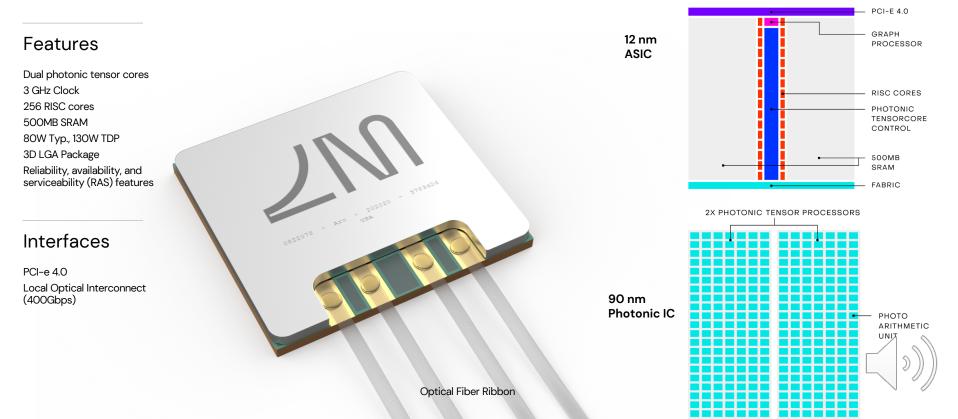
Faster, lower energy, and decoupled from Moore's Law.

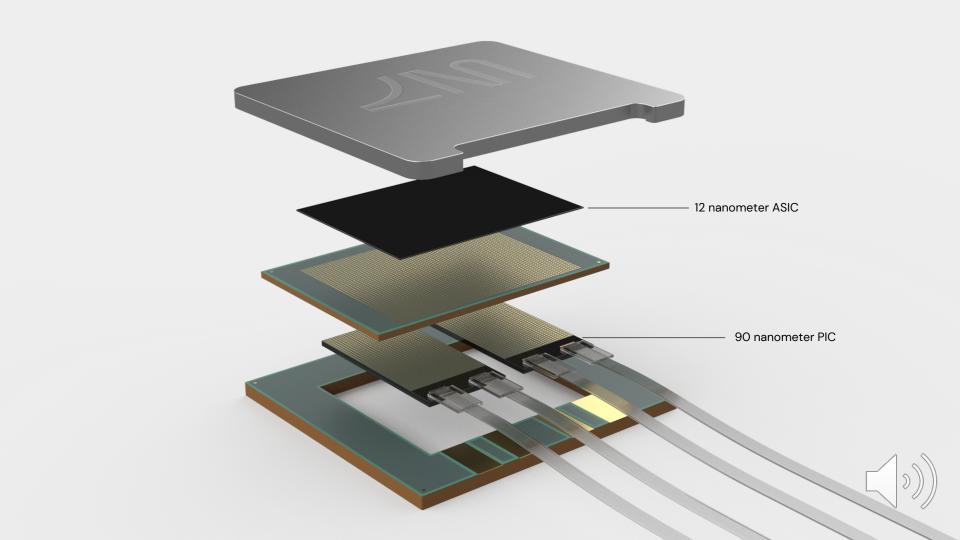


Looking ahead

Envise

Combining photonics and electronics in a single, compact package



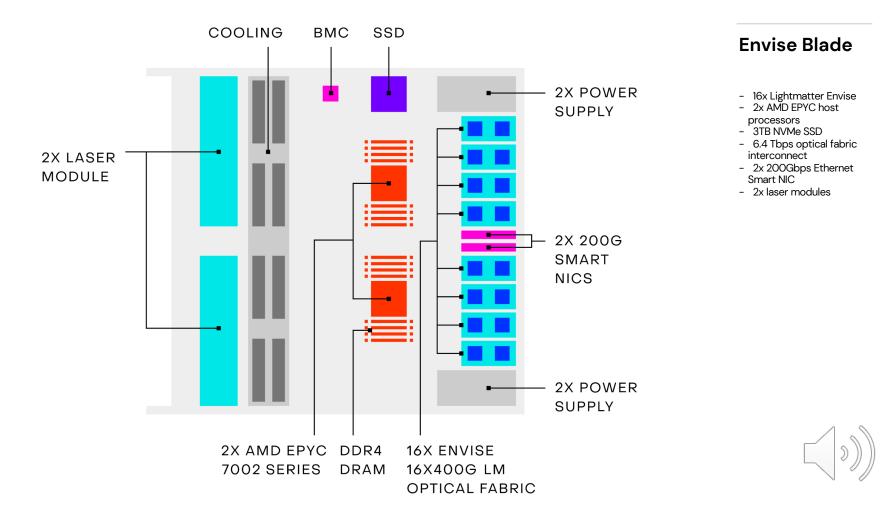


Envise Blade

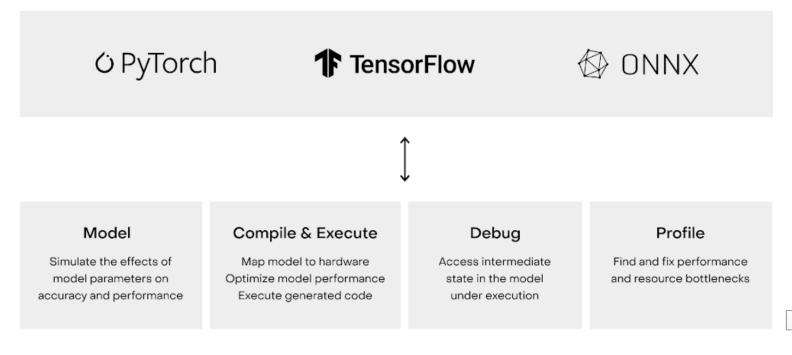
A general-purpose Al accelerator system

Features

- 16x Lightmatter Envise 4U form factor
- 3kW TDP



FEATURES



General-Purpose Al Inference Compute

