
The Future of Computing: Domain-Specific Architecture

Chesapeake Large Scale Analytics Conference
October 5, 2021

Bill Dally
Chief Scientist and SVP of Research, NVIDIA Corporation

Adjunct Professor of EE and CS, Stanford University

Faster
Computing

Better
Algorithms

More
Data

Value

4

We need to continue delivering improved
performance and perf/W

5

But Process Technology isn’t Helping us
Anymore

Moore’s Law is Dead

Jo
hn

 H
en

ne
ss

y
an

d
D

av
id

 P
at

te
rs

on
, C

om
pu

te
r A

rc
hi

te
ct

ur
e:

 A
 Q

ua
nt

ita
tiv

e
Ap

pr
oa

ch
, 6

/e
. 2

01
8

7

Accelerators can continue scaling

perf and perf/W

Fast Accelerators since 1985
• Mossim Simulation Engine: Dally, W.J. and Bryant, R.E., 1985. A hardware architecture for switch-

level simulation. IEEE Trans. CAD, 4(3), pp.239-250.
• MARS Accelerator: Agrawal, P. and Dally, W.J., 1990. A hardware logic simulation system. IEEE

Trans. CAD, 9(1), pp.19-29.
• Reconfigurable Arithmetic Processor: Fiske, S. and Dally, W.J., 1988. The reconfigurable arithmetic

processor . ISCA 1988.
• Imagine: Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattson, P. and Owens, J.D.,

2003. Programmable stream processors. Computer, 36(8), pp.54-62.
• ELM: Dally, W.J., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R.C., Parikh, V., Park, J. and

Sheffield, D., 2008. Efficient embedded computing. Computer, 41(7).
• EIE: Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and Dally, W.J., 2016, June. EIE:

efficient inference engine on compressed deep neural network, ISCA 2016
• SCNN:Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler,

S.W. and Dally, W.J., 2017, June. Scnn: An accelerator for compressed-sparse convolutional neural
networks, ISCA 2017

• Darwin: Turakhia, Bejerano, and Dally, “Darwin: A Genomics Co-processor provides up to 15,000×
acceleration on long read assembly”, ASPLOS 2018.

• SATiN: Zhuo, Rucker, Wang, and Dally, “Hardware for Boolean Satisfiability Inference,” Under Review.

Accelerators Employ:
• Special Data Types and Operations

• Do in 1 cycle what normally takes 10s or 100s – 10-1000x efficiency gain

• Massive Parallelism – >1,000x, not 16x – with Locality
• This gives performance, not efficiency

• Optimized Memory
• High bandwidth (and low energy) for specific data structures and operations

• Reduced or Amortized Overhead
• 10,000x efficiency gain for simple operations

• Algorithm-Architecture Co-Design
9

10

Specialized Operations

Orders of Magnitude Efficiency

Moderate Speedup

Specialized Operations

Dynamic programming for gene sequence alignment (Smith-Waterman)

On 14nm CPU On 40nm Special Unit
35 ALU ops, 15 load/store 1 cycle (37x speedup)
37 cycles 3.1pJ (26,000x efficiency)
81nJ 300fJ for logic (270,000x efficiency)

Why is a Specialized PE 26,000x More Efficient?

OOO CPU Instruction – 250pJ (99.99% overhead, ARM A-15)

Area is proportional to energy – all 28nm

16b Int Add, 32fJ

Evangelos Vasilakis. 2015. An Instruction Level Energy Characterization of Arm Processors. Foundation of Research and Technology Hellas, Inst. of Computer Science, Tech. Rep.
FORTH-ICS/TR-450 (2015)

13

Specialization -> Efficiency

Efficiency -> Parallelization

Parallelization -> Speedup

14

Dynamic programming for gene sequence alignment (Smith-Waterman)

Specialization -> 37x speedup, 26,000x efficiency, 270,000x for logic

Efficiency -> Parallelism 64 PE arrays x 64 PEs per array, 4,096x total

Speedup = 37 (Specialization) x 4,034 (Parallelism) = 150,000x total

15

Dynamic programming for gene sequence alignment (Smith-Waterman)

Specialization -> 37x speedup, 26,000x efficiency, 270,000x for logic

Efficiency -> Parallelism 64 PE arrays x 64 PEs per array, 4,096x total

Speedup = 37 (Specialization) x 4,034 (Parallelism) = 150,000x total

16

The Algorithm Often Has to Change

To Avoid Being Global Memory Limited

Algorithm-Architecture Co-Design for Darwin
Start with Graphmap

17

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment

Graphmap
~10K seeds
~440M hits

Filtration

Alignment
~3 hits

~1 hits

1. Graphmap (software)

1

Algorithm-Architecture Co-Design for Darwin
Replace Graphmap with Hardware-Friendly Algorithms
Speed up Filtering by 100x, but 2.1x Slowdown Overall

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment

Graphmap
~10K seeds
~440M hits

Darwin
~2K seeds
~1M hits

Filtration
(D-SOFT)

Alignment
(GACT)

Filtration

Alignment
~3 hits

~1 hits

~1680 hits

~1 hits

2.1X slowdown

1. Graphmap (software)
2. Replace by D-SOFT and GACT

(software)

1

2

Algorithm-Hardware Co-Design for Darwin
Accelerate Alighment – 380x Speedup

19

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment
1. Graphmap (software)
2. Replace by D-SOFT and GACT

(software)
3. GACT hardware-acceleration

2.1X slowdown

380X speedup

1. Graphmap (software)
2. Replace by D-SOFT and GACT

(software)
3. GACT hardware-acceleration

1

2

3

Algorithm-Hardware Co-Design for Darwin
4x Memory Parallelism – 3.9x Speeedup

20

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment

DRAM

DRAM

DRAM

DRAM

SPL

SPL

SPL

SPL

2.1X slowdown

380X speedup

3.9X speedup

1. Graphmap (software)
2. Replace by D-SOFT and GACT

(software)
3. GACT hardware-acceleration
4. Four DRAM channels for D-SOFT1

2

3

4

Algorithm-Hardware Co-Design for Darwin
Specialized Memory for D-Soft Bin Updates – 15.6x Speedup

21

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment

DRAM

DRAM

DRAM

DRAM

SPL

SPL

SPL

SPL

UBL

UBL

Bin-count
SRAM

Bin-count
SRAM

2.1X slowdown

380X speedup

3.9X speedup

15.6X speedup

1. Graphmap (software)
2. Replace by D-SOFT and GACT

(software)
3. GACT hardware-acceleration
4. Four DRAM channels for D-SOFT
5. Move bin updates in D-SOFT to

SRAM (ASIC)

1

2

3

4

5

Algorithm-Hardware Co-Design for Darwin
Pipeline D-Soft and GACT – now completely D-Soft limited – 1.4x

Overall 15,000x

22

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment
1. Graphmap (software)
2. Replace by D-SOFT and GACT

(software)
3. GACT hardware-acceleration
4. Four DRAM channels for D-SOFT
5. Move bin updates in D-SOFT to

SRAM (ASIC)
6. Pipeline D-SOFT and GACT

2.1X slowdown

380X speedup

3.9X speedup

15.6X speedup

1.4X speedup

D-SOFT

So
ft
w
ar
e

GACT
60

GACT
61

GACT
62

GACT
63

GACT
0

GACT
1

GACT
2

GACT
3

1

2

3

4

5

6

23

Memory Dominates

24

Memory dominates power and area

Memory Dominates

Communication is Expensive, Be Small, Be Local

LPDDR DRAM
GB

On-Chip SRAM
MB

Local SRAM
KB

640pJ/word

50pJ/word

5pJ/word

Small, Local Memories

Traceback RAM
2KB, 4b wide
2.8pJ/access

vs nJ to DRAM

28

MAGNET

PE

PE

PE

PE

PE

PE

PE

PE

PE

R

R

R

R

R

R

R

R

RG
lo

ba
l C

on
tro

lle
r

Global Buffer

MAGNet System

DRAM

Processing Element (PE)

X

Wb Ab
X

Wb Ab
X

Wb Ab

VectorSize

Weight
Collector

Accumulation
Collector

++++

+

Vector MAC unit

Venkatesan, et al. "MAGNet: A Modular Accelerator Generator for Neural Networks." ICCAD. 2019.

29

Algorithms must be memory optimized

Minimize global memory accesses

Keep local memory footprint small

GACT Alignment
• 15M Reads, 10k bases each, ~2k hits each

– ~300T Alignments to be done
– Additional parallelism within each alignment

• But long reads have large (10M) memory footprint
• Solution: GACT (Tiling)

31

Complex Memory Ops

Not just Load/Store

Hash, Atomic Functions, Side Effects

Make the Most Use of One Communication

Message-Driven Processing
One Communication, Many Operations

R
0

R
1
5

R
1
6

R
3
1

Arbiter

Bin-count
SRAM 1

Update-bin
logic (UBL)

NZ bins
SRAM

Update-bin
logic (UBL)

Bin-count
SRAM 16

NZ bins
SRAM

Network-on-chip
(16-endpoint

Butterfly)Seed-position
lookup (SPL)

(seed, j) candidate_pos

DRAM

(bin, j)

Seed-position
lookup (SPL)

Seed-position
lookup (SPL)

Seed-position
lookup (SPL)

DRAM

DRAM

DRAM

AGCTTTCCCTACGTAGCTGCATCTATTTCTCGTATTTAGC

G
T
G
C
T
T
G
G
A
T
A
T
A

candidate_pos

One traversal of network

• Access hash table

• Increment bin
(RMW)

• If it was zero,
append to NZ bins

• If over threshold,
append to output
queue

33

Sparsity and Compression

multiply

Memory Bandwidth and Capacity

34

EIE HARDWAREPE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Central Control
• Traverse CSC Sparse matrix

• Decode scalar quantization

• Little overhead

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and Dally, W.J., 2016, June. EIE: efficient inference engine on compressed deep neural network, ISCA 2016

35

Platforms for Acceleration

GPUs Provide:
• High-Bandwidth, Hierarchical Memory System

• Can be configured to match application

• Programmable Control and Operand Delivery

• Simple places to bolt on Domain-Specific Hardware
• As instructions or memory clients

36

Specialized Instructions Amortize Overhead

Operation Ops Energy** Overhead*
Vs op %tot

HFMA 2 1.5pJ 20x 95%
HDP4A 8 6.0pJ 5x 83%
HMMA 128 130pJ 0.23x 19%
IMMA 1024 230pJ 0.13x 12%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process

(map force
(pairs

particles)

Mapping
DirectivesProgram

Mapper &
Runtime

GPU Data & Task Placement

Synthesis

Custom Compute Blocks
(Instructions or Clients)

SMs

Configurable MemoryEfficient NoC

41

Implementation Alternatives

G
D

D
R6

LP
D

D
R4

42

Implementation Alternatives

G
D

D
R6

LP
D

D
R4

D
PS

TE
P

43

MULTI-CHIP MODULES (MCMS)

44

Accelerator Design as Programming

With Hardware Costs

DSA Design is Programming
With a Hardware Cost Model

Algorithm Mapping

Hardware Costs

Global Memory 640pJ/word

On Chip Comm 3.2pJ/word-mm

Local Memory 1.6pJ/word

Arithmetic 5pJ (FP64 FMA)

1.2pJ (FP32 FMA)

260fJ (int16 mul)

10fJ (int8 add)
*Energy numbers for 14nm
**A word is 32 bits 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06

49

Accelerating Deep Learning

Command Interface

Tensor Execution Micro-controller

Memory Interface

Input DMA
(Activations

and
Weights)

Unified
512KB
Input
Buffer

Activations
and Weights

Sparse Weight
Decompression

Native
Winograd

Input
Transform

MAC
Array

2048 Int8
or

1024 Int16
or

1024 FP16

Output
Accumulator

s

Output
Postprocessor

(Activation
Function,

Pooling etc.)

Output DMA

NVIDIA DLA

EIE HardwarePE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Central Control

• Traverse CSC Sparse matrix

• Decode scalar quantization

• Little overhead

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and Dally, W.J., 2016, June. EIE: efficient inference engine on compressed deep neural network, ISCA 2016

52

Sparse Convolution Engine

Sparse Weight
Buffer

Sparse Input
Buffer

W

M

MW

…

…

MxW multiplier arrayIndices

Indices

Output Addr
Computation

W
M

MW

Banked
Output
Buffer

…

Scatter-Add Unit

Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, S.W. and Dally,
W.J., 2017, June. Scnn: An accelerator for compressed-sparse convolutional neural networks, ISCA 2017

53

RC18: A 36-die MCM Architecture
Connected via Ground-Referencing Signaling (GRS)

36-die

Global
Buffer

Other
I/O

GRS
West
(Out)

GRS
South
(In)

GRS
South
(Out)

GRS
East
(In)

GRS
West
(In)

GRS
North
(Out)

GRS
North
(In)

GRS
East
(Out)

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

N
o
P

JTAG

GPIO

RISC-V

• GRS: 4 data bumps
+ 1 clock bump,
25Gbps/pin,
1.6pJ/bit*.

• 8 GRS links per die
connected in mesh
(NESW TX/RX).

• 100GB/s per
chiplet.

• 105fJ/op

*1.2pJ/bit at 8b width, 1pJ/bit at 16b width

54

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Cpe

Kpe

Chip 0 Chip 1

Chip 2 Chip 3

Cchip

Kchip

Cchip

Kchip

Cchip

Kchip

Cchip

C

H
W

C

R
S

P
Q

K

K

C

RC18: Partitioning of Weights and Activations
Scaling DL Inference across NoP and NoC

Cchip

Kchip

Kchip

K

Cchip

Kchip

55

MAGNET

PE

PE

PE

PE

PE

PE

PE

PE

PE

R

R

R

R

R

R

R

R

RG
lo

ba
l C

on
tro

lle
r

Global Buffer

MAGNet System

DRAM

Processing Element (PE)

X

Wb Ab
X

Wb Ab
X

Wb Ab

VectorSize

Weight
Collector

Accumulation
Collector

++++

+

Vector MAC unit

Venkatesan, et al. "MAGNet: A Modular Accelerator Generator for Neural Networks." ICCAD. 2019.

56

DataFlow Options

Weight Buffer Input
Buffer

Weight Collector

Vector
MAC

Vector
MAC

Vector
MAC

Accum. Buffer

Temporal
weight reuse

W
ei

gh
t S

ta
tio

na
ry

 (W
S

) Input
BufferWeight Buffer

Vector
MAC

Vector
MAC

Vector
MAC

Accum. Collector

Accum. Buffer

Temporal
partial sum

reuseO
ut

pu
t S

ta
tio

na
ry

 (O
S

)

Less-frequent access

More-frequent access

Energy consumption

57

Multi-Level DataFlows

Weight Buffer Input
Buffer

Weight Collector

Vector
MAC

Vector
MAC

Vector
MAC

Temporal
weight reuse

Accum. Collector

Accum. Buffer

Temporal partial
sum reuse

O
ut

pu
t S

ta
tio

na
ry

 –
Lo

ca
l

W
ei

gh
t S

ta
tio

na
ry

 (O
S

-L
W

S
)

Reduce accum.
buffer accesses

Weight Buffer Input
Buffer

Weight Collector

Vector
MAC

Vector
MAC

Vector
MAC

Temporal
weight reuse

Accum. Collector

Accum. BufferW
ei

gh
t S

ta
tio

na
ry

 –
Lo

ca
l

O
ut

pu
t S

ta
tio

na
ry

 (W
S

-L
O

S
)

Reduce weight
buffer accesses

Temporal
partial sum

reuse

Less-frequent access More-frequent access

Weight Stationary (WS) Output Stationary (OS)

58

Multi-Level DataFlows

70 fJ/MAC

35 fJ/OP

29 TOPS/W

60

Conclusion

Summary

• Moore’s Law is over, but we must continue scaling perf/W
• Accelerators are the future

– Specialization, Customized Memories -> Efficiency
– Parallelism -> Speedup
– Co-Design: The algorithm has to change
– Memory dominates

• GPUs as accelerator platforms
– GPUs – efficient memory, communication and control
– Custom blocks – instructions or clients

• DSA design is programming – with a hardware cost model

