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We need to continue delivering improved 
performance and perf/W
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But Process Technology isn’t Helping us 
Anymore

Moore’s Law is Dead
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Accelerators can continue scaling

perf and perf/W



Fast Accelerators since 1985
• Mossim Simulation Engine: Dally, W.J. and Bryant, R.E., 1985. A hardware architecture for switch-

level simulation. IEEE Trans. CAD, 4(3), pp.239-250.
• MARS Accelerator:  Agrawal, P. and Dally, W.J., 1990. A hardware logic simulation system. IEEE 

Trans. CAD, 9(1), pp.19-29.
• Reconfigurable Arithmetic Processor: Fiske, S. and Dally, W.J., 1988. The reconfigurable arithmetic 

processor . ISCA 1988.
• Imagine:  Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattson, P. and Owens, J.D., 

2003. Programmable stream processors. Computer, 36(8), pp.54-62.
• ELM: Dally, W.J., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R.C., Parikh, V., Park, J. and 

Sheffield, D., 2008. Efficient embedded computing. Computer, 41(7).
• EIE: Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and Dally, W.J., 2016, June. EIE: 

efficient inference engine on compressed deep neural network, ISCA 2016
• SCNN:Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, 

S.W. and Dally, W.J., 2017, June. Scnn: An accelerator for compressed-sparse convolutional neural 
networks, ISCA 2017

• Darwin: Turakhia, Bejerano, and Dally, “Darwin: A Genomics Co-processor provides up to 15,000×
acceleration on long read assembly”, ASPLOS 2018. 

• SATiN: Zhuo, Rucker, Wang, and Dally, “Hardware for Boolean Satisfiability Inference,” Under Review.



Accelerators Employ:
• Special Data Types and Operations

• Do in 1 cycle what normally takes 10s or 100s – 10-1000x efficiency gain

• Massive Parallelism – >1,000x, not 16x – with Locality
• This gives performance, not efficiency

• Optimized Memory
• High bandwidth (and low energy) for specific data structures and operations

• Reduced or Amortized Overhead
• 10,000x efficiency gain for simple operations

• Algorithm-Architecture Co-Design
9
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Specialized Operations

Orders of Magnitude Efficiency

Moderate Speedup



Specialized Operations

Dynamic programming for gene sequence alignment (Smith-Waterman)

On 14nm CPU On 40nm Special Unit
35 ALU ops, 15 load/store 1 cycle (37x speedup)
37 cycles 3.1pJ (26,000x efficiency)
81nJ 300fJ for logic (270,000x efficiency)



Why is a Specialized PE 26,000x More Efficient?

OOO CPU Instruction – 250pJ (99.99% overhead, ARM A-15)

Area is proportional to energy – all 28nm

16b Int Add, 32fJ

Evangelos Vasilakis. 2015. An Instruction Level Energy Characterization of Arm Processors. Foundation of Research and Technology Hellas, Inst. of Computer Science, Tech. Rep. 
FORTH-ICS/TR-450 (2015)
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Specialization -> Efficiency

Efficiency -> Parallelization

Parallelization -> Speedup
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Dynamic programming for gene sequence alignment (Smith-Waterman)

Specialization -> 37x speedup, 26,000x efficiency, 270,000x for logic

Efficiency -> Parallelism 64 PE arrays x 64 PEs per array, 4,096x total

Speedup = 37 (Specialization) x 4,034 (Parallelism) = 150,000x total
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Dynamic programming for gene sequence alignment (Smith-Waterman)

Specialization -> 37x speedup, 26,000x efficiency, 270,000x for logic

Efficiency -> Parallelism 64 PE arrays x 64 PEs per array, 4,096x total

Speedup = 37 (Specialization) x 4,034 (Parallelism) = 150,000x total
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The Algorithm Often Has to Change

To Avoid Being Global Memory Limited



Algorithm-Architecture Co-Design for Darwin
Start with Graphmap
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Algorithm-Architecture Co-Design for Darwin
Replace Graphmap with Hardware-Friendly Algorithms
Speed up Filtering by 100x, but 2.1x Slowdown Overall
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Algorithm-Hardware Co-Design for Darwin
Accelerate Alighment – 380x Speedup
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Algorithm-Hardware Co-Design for Darwin
4x Memory Parallelism – 3.9x Speeedup
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Algorithm-Hardware Co-Design for Darwin
Specialized Memory for D-Soft Bin Updates – 15.6x Speedup
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Algorithm-Hardware Co-Design for Darwin
Pipeline D-Soft and GACT – now completely D-Soft limited – 1.4x

Overall 15,000x
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Memory Dominates
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Memory dominates power and area



Memory Dominates



Communication is Expensive, Be Small, Be Local

LPDDR DRAM
GB

On-Chip SRAM
MB

Local SRAM
KB

640pJ/word

50pJ/word

5pJ/word



Small, Local Memories

Traceback RAM 
2KB, 4b wide
2.8pJ/access

vs nJ to DRAM
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Venkatesan, et al. "MAGNet: A Modular Accelerator Generator for Neural Networks." ICCAD. 2019.
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Algorithms must be memory optimized

Minimize global memory accesses

Keep local memory footprint small



GACT Alignment
• 15M Reads, 10k bases each, ~2k hits each

– ~300T Alignments to be done
– Additional parallelism within each alignment

• But long reads have large (10M) memory footprint
• Solution: GACT (Tiling)  
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Complex Memory Ops

Not just Load/Store

Hash, Atomic Functions, Side Effects

Make the Most Use of One Communication



Message-Driven Processing
One Communication, Many Operations
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Sparsity and Compression 

multiply

Memory Bandwidth and Capacity
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EIE HARDWAREPE PE PE PE 

PE PE PE PE 

PE PE PE PE 

PE PE PE PE 

Central Control 
• Traverse CSC Sparse matrix

• Decode scalar quantization

• Little overhead

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and Dally, W.J., 2016, June. EIE: efficient inference engine on compressed deep neural network, ISCA 2016
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Platforms for Acceleration



GPUs Provide:
• High-Bandwidth, Hierarchical Memory System

• Can be configured to match application

• Programmable Control and Operand Delivery

• Simple places to bolt on Domain-Specific Hardware
• As instructions or memory clients

36



Specialized Instructions Amortize Overhead

Operation Ops Energy** Overhead*
Vs op %tot

HFMA 2 1.5pJ 20x 95%
HDP4A 8 6.0pJ 5x 83%
HMMA 128 130pJ 0.23x 19%
IMMA 1024 230pJ 0.13x 12%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process



(map force     
(pairs 

particles)

Mapping 
DirectivesProgram

Mapper &
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GPU Data & Task Placement

Synthesis

Custom Compute Blocks 
(Instructions or Clients)

SMs

Configurable MemoryEfficient NoC
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Implementation Alternatives
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Implementation Alternatives
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MULTI-CHIP MODULES (MCMS)
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Accelerator Design as Programming

With Hardware Costs



DSA Design is Programming
With a Hardware Cost Model

Algorithm Mapping



Hardware Costs

Global Memory 640pJ/word

On Chip Comm 3.2pJ/word-mm

Local Memory 1.6pJ/word

Arithmetic 5pJ (FP64 FMA) 

1.2pJ (FP32 FMA)

260fJ (int16 mul)

10fJ (int8 add)
*Energy numbers for 14nm
**A word is 32 bits 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06
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Accelerating Deep Learning



Command Interface

Tensor Execution Micro-controller

Memory Interface

Input DMA
(Activations 

and 
Weights)

Unified
512KB 
Input
Buffer

Activations 
and Weights

Sparse Weight 
Decompression

Native 
Winograd

Input
Transform

MAC
Array

2048 Int8
or

1024 Int16
or

1024 FP16

Output 
Accumulator

s

Output 
Postprocessor

(Activation 
Function, 

Pooling etc.)

Output DMA

NVIDIA DLA



EIE HardwarePE PE PE PE 

PE PE PE PE 

PE PE PE PE 

PE PE PE PE 

Central Control 

• Traverse CSC Sparse matrix

• Decode scalar quantization

• Little overhead

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and Dally, W.J., 2016, June. EIE: efficient inference engine on compressed deep neural network, ISCA 2016
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Sparse Convolution Engine
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Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, S.W. and Dally, 
W.J., 2017, June. Scnn: An accelerator for compressed-sparse convolutional neural networks, ISCA 2017
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RC18: A 36-die MCM Architecture
Connected via Ground-Referencing Signaling (GRS)

36-die

Global
Buffer

Other
I/O

GRS
West
(Out)

GRS
South
(In)

GRS
South
(Out)

GRS
East
(In)

GRS
West
(In)

GRS
North
(Out)

GRS
North
(In)

GRS
East
(Out)

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

N
o
P

JTAG

GPIO

RISC-V

• GRS: 4 data bumps 
+ 1 clock bump, 
25Gbps/pin, 
1.6pJ/bit*.

• 8 GRS links per die
connected in mesh 
(NESW TX/RX).

• 100GB/s per 
chiplet.

• 105fJ/op

*1.2pJ/bit at 8b width, 1pJ/bit at 16b width
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MAGNET
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Venkatesan, et al. "MAGNet: A Modular Accelerator Generator for Neural Networks." ICCAD. 2019.
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DataFlow Options
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Multi-Level DataFlows
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Multi-Level DataFlows

70 fJ/MAC

35 fJ/OP

29 TOPS/W
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Conclusion



Summary

• Moore’s Law is over, but we must continue scaling perf/W
• Accelerators are the future

– Specialization, Customized Memories -> Efficiency
– Parallelism -> Speedup
– Co-Design: The algorithm has to change
– Memory dominates

• GPUs as accelerator platforms
– GPUs – efficient memory, communication and control
– Custom blocks – instructions or clients

• DSA design is programming – with a hardware cost model




