Machine learning of interatomic potentials

Justin S. Smith Metropolis Postdoctoral Fellow Los Alamos National Lab (T-CNLS/T-1)

Los Alamos National Lab:

Kipton Barros Sergei Tretiak Benjamin Nebgen Nicholas Lubbers Saryu Fensin Timothy Germann

Los Alamos

NATIONAL LABORATORY

UNC Chapel Hill: Roman Zubatyuk Olexandr Isayev

University of Florida: Adrian Roitberg

LA-UR-19-30185

Molecular (atomistic) dynamics

Dynamics
$$m \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{f}_i$$

In principle, requires a quantum mechanical calculation at *each* time step! **Materials**

Ab initio Quantum Mechanics (QM)

Time-independent Schrödinger equation

$$\widehat{H}|\psi\rangle = E|\psi\rangle$$

 $\widehat{H} = KE + ER + EN + NN$

Class	Method	Cost
Semi-empirical	AM1, PM6, DFTB	0(N ²)
Density functional theory	B3LYP, wB97x, PBE	0(N ³)
Post-Hartree Fock	MP2, Coupled Cluster	$0(N^4) >$

Empirical potentials for materials

M.S. Daw and M.I. Baskes, Phys. Rev. B 29 (1984) 6443.

Levels of model chemistry

Error

6

Supervised Machine Learning

Types of tasks

- Regression
- Classification

A few applications

- Image recognition
- Social media moderation
- Stock market prediction

Deep learning (neural networks) in a nutshell

Deep Learning for Atomistic Potentials

What are deep learning potentials?

Transferability and extensibility for DL potentials

Building an energy conservative DL potential: how to get atomic forces?

Atomic environment description

Chemical Science

EDGE ARTICLE

Cite this: Chem. Sci., 2017, 8, 3192

View Article Online View Journal | View Issue

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost[†]

ANI, the first ever generalpurpose machine learning potential for molecules.

J. S. Smith,^a O. Isayev^{*b} and A. E. Roitberg^{*a}

HIP-NN, a first generation graph convolution based neural network for molecular potentials.

Hierarchical modeling of molecular energies using a deep neural network

Cite as: J. Chem. Phys. **148**, 241715 (2018); https://doi.org/10.1063/1.5011181 Submitted: 30 October 2017 . Accepted: 31 January 2018 . Published Online: 19 March 2018

Nicholas Lubbers 跑, Justin S. Smith 跑, and Kipton Barros 💷

SCIENCE ADVANCES | RESEARCH ARTICLE

CHEMISTRY

Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network

Roman Zubatyuk^{1,2,3}, Justin S. Smith^{2,4}, Jerzy Leszczynski³, Olexandr Isayev¹*

AIM-Net, a multitask model for QM property prediction. In print at Science Advances.

Common invariant components of ML model potentials

 R_{ii}

 θ_{ijk}

Radial symmetry functions

- J. Behler and M. Parrinello, *Phys. Rev. Lett.*, 2007, **98**, 146401 All Atoms $G_m^R = \sum_{i \neq i} e^{-\eta (R_{ij} - R_S)^2} f_C(R_{ij})$
- N Lubbers, JS Smith, K Barros J. Chem. Phys., 2018, 148, 241715

Angular symmetry functions J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98, 146401 All Atoms $G_{m}^{A_{\text{mod}}} = 2^{1-\zeta} \sum_{i \ b \neq i} \left(1 + \lambda \cos(\theta_{ijk})\right)^{\zeta} exp\left[-\eta \left(R_{ij}^{2} + R_{ik}^{2} + R_{jk}^{2}\right)^{2}\right] f_{C}(R_{ij}) f_{C}(R_{ik}) f_{C}(R_{jk})$ JS Smith, O Isayev, AE Roitberg, Chem. Sci., 2017, 8, 3192-3203 All Atoms $G_m^{A_{\text{mod}}} = 2^{1-\zeta} \sum_{i,k\neq i}^{\text{All Atoms}} \left(1 + \cos(\theta_{ijk} - \theta_s)\right)^{\zeta} exp\left[-\eta \left(\frac{R_{ij}^2 + R_{ik}^2}{2} - R_s\right)^2\right] f_C(R_{ij}) f_C(R_{ik})$ 1.00Shift: 0.70 Shift: 1.16 0.75 Shift: 1.62 Output 0.50 Shift: 2.08 0.25 0.00 0.25π 0.75π 1.25π 1.75π 0 2 З Angle (Radians) Distance (Å) Distance between Radial atoms *i* and *j* Angular Angle between atoms *j* and *k* centered on atom i

ANI style neural network model potential

JS Smith, O Isayev, AE Roitberg, Chem. Sci., 2017, 8, 3192-3203

HIP-NN style neural network model potential

N Lubbers, JS Smith, K Barros; J. Chem. Phys., 2018, 148, 241715

Can we predict when the model is wrong?

Active Learning - The Big Picture

An automated and self-consistent data generation framework

Physics, (2018), 148 (24), 241733

Testing transferability and extensibility

ANI-MD Benchmark

128 frames from 1ns trajectories @ 300K for each:

DrugBank and Tripeptide Benchmarks

JS Smith, et al.; *The Journal of Chemical Physics*, (**2018**), 148 (24), 241733

Active-learning results vs. random sampling

Molecular dynamics force errors vs. reference DFT Correlation of force components for the ANI-MD Benchmark

Transcriptional Regulatory Repressor Protein (5MXV) in explicit water Simulated with ANI-2x (CHNOSFCI)

From Mycobacterium Tuberculosis

- ~35K atoms
- Explicit water
- No ions
- S, F and Cl in ligand ²⁴

Simulation of Complex Chemical Reactions

Carbon nanoparticles/sheets nucleation [4000 atoms in 60A box at 2500K, 5ns MD simulation]

Transferring knowledge from DFT to CCSD(T)

- Subsample 10% of ANI-1x training data (0.5M of 5M)
- Recompute CCSD(T)/CBS level
- 340k parameters fixed, re-train 60k
- 10⁷ faster than DFT

Outsmarting Quantum Chemistry Through Transfer Learning

JS Smith, B Nebgen, R Zubatyuk, N Lubbers, C Devereux, K Barros, S Tretiak, O Isayev, A Roitberg https://doi.org/10.1038/s41467-019-10827-4 Nat. Comm. **2019**

- New ANI-1ccx model outperforms DFT on reaction energies and torsional profiles
- A 24 core hours calculation for CCSD(T)/CBS takes 2 GPU microseconds for ANI-1ccx

How to build a general potential for metal? All possible configurations for a metal

Human vs machine driven sampling

Un physical Configurations

Extreme Conditions

Liquid Phase

Random Di sorde r HUMBIS

Crystal Phase

Datasets:

Machine = MD simulation of Random configurations and active learning configuations

Human = MD melt simulation of **human selected crystal** with systematic configurations

Machine@Human: trained to machine selected data and tested on human selected data

<110> shock in Al using LAMMPS with the ANI potential 1.3 million Al atom simulation

- Potential composed of an ensemble of 2 Neural Networks potentials
- Simulations carried out on 80x Titan V GPUs in about 10 hours
- 2 kms⁻¹ shock

Thank you!

