#### **OCM** Software Data Analytics Framework for Detecting Malware and Machine Learning Back Doors

+ + + + + + + Casey Battaglino, Mark Nutter, **Doug Joseph** 

+ + + + + + + + + + + + + + +

#### **IoT Immune System: Real Time Detection of Multiple Attack Vectors**



#### SW/FW Malware



#### Two Projects Covered in this Presentation:

1. DRAFFT: Detecting back door Trojans in deep learning models.

in collaboration with: WUMBC UC San Diego

#### 2. Malware: Scalable detection/classification of Malware.

in collaboration with: 🚱 UMBC



UNIVERSITY OF OREGON



#### **1. DRAFFT**

("DReAming of Features to Find Trojans")

(AKA "Riding on the coattails of Google Deep Dream")

#### Background: Backdoor Trojans in Neural Networks



Backdoors do not reduce performance of the model *unless* the trigger is present. Therefore, are very difficult to detect (trigger is not present in any test platform).



#### Background: Backdoor Trojans in Neural Networks

Source: Gu, et al. 2019 (BadNets)



Backdoors are different from adversarial noise: They are deliberately pre-inserted into the model, and must be simple to express in the real world.



#### Background: Backdoors in Neural Networks

Models are vulnerable across the entire machine learning supply chain.



Attack *public data sets*: insert triggers + bad labels.
Attack *training platforms*: modify inputs/labels during training.

Example 2: transfer learning attack



- Attack *pre-trained models*: fine-tune with malicious data.
- Federated Learning

#### Background: Backdoors in Neural Networks

Backdoors can survive transfer learning!



#### TrojAl Challenge

- A team is presented with 1000 deep classification models.
- All of them will belong to some high-level domain (Visual, Text, or Audio), with 5 possible classes.
- Given 24 hours on a CPU-GPU node, return the probability of each model containing a backdoor.



\*\*\* Access to sample input data will be severely restricted (and eventually revoked).



#### Objective

- Given some model and no or little concept of its training data, applications, etc.
  - How can we audit it for backdoors?
  - Can we "reverse engineer" the class structure of the network?
  - Can we do so efficiently (e.g., in 1.5 min)?



#### **Our Approach**

We can visualize intermediate layer activations to build intuition, by generating synthetic inputs.



Activation patterns are more discernible as data flows through the network



(Source: Kahng, et al. 2018)

Typically, each successive layer of a neural network will create a more distinct cluster of activations, as shown on the right.

low-dimensional embedding / projection reveals clusters

e.g., using UMAP or t-SNE (map high dimensional space into a low one)

**Our Approach : Detection Pipeline** 

#### **DRAFFT**: DReAming of Features to Find Trojans



Confidential © 2019 Arm Limited 12

discover outlying classes

between suspicious classes

using optimization



## **Our Approach : Time Budgets**

 $\approx$  1.5 minutes per model: performance matters at every step.

example budget:



between suspicious classes using optimization



# 1. Model Inversion

- We may have little or no test data.
  - We want to synthesize a wide variety of inputs that activate the features that compose each class.
- Using gradient descent, we can form inputs that maximize a particular objective:
  - e.g., {neuron activation, layer activation, class activation}
  - A lightweight model inversion (a GAN is effective but can take hours).



forward pass: find activation of neuron / layer / class

**backward pass**: compute gradient to modify input to increase activation of neuron/layer/class



# 1. Model Inversion

• We can now analyze the activations of these inputs at a given layer.



# 1. Model Inversion: Diversity

- By adding a penalty term increasing cosine distance, we sample more diverse features.
  - Pushes multiple examples to be different from each other
  - Gives us a better representation of a class.



work, we begin by computing the Gram matrix G of the channels, where  $G_{i,j}$  is a the dot product between the (flattened) response of filter i and filter j:

$$G_{i,j} = \sum_{x,y} \text{layer}_n[\mathbf{x},\mathbf{y},\mathbf{i}] \cdot \text{layer}_n[\mathbf{x},\mathbf{y},\mathbf{j}]$$

From this, we compute the diversity term: the negative pairwise cosine similarity of pairs of visualizations.

$$C_{ ext{diversity}} = -\sum_{a} \sum_{b \neq a} rac{\operatorname{vec}(G_a) \cdot \operatorname{vec}(G_b)}{||\operatorname{vec}(G_a)|| \ ||\operatorname{vec}(G_b)||}$$

We then maximize the diversity term jointly with the regular optimization objective.

# 1. Model Inversion: Diversity Example

- Example: We synthesize 160 inputs from 5 classes with increasing diversity (ImageNet)
  - We visualize features from 1<sup>st</sup> fully connected layer using UMAP.
  - With diversity too low, inputs are too similar to explore class structure.
  - With diversity too high, class structure is lost.



... What do these points correspond to? (Next Slide)

# 1. Model Inversion: Class Activation Atlas

#### Visualizing the diverse representation of a class: Class Activation Atlas



Technique From: S. Carter, Z. Armstrong, L. Schubert, I. Johnson, and C. Olah. Activation atlas. Distill, 2019. https://distill.pub/2019/activation-atlas.



# 1. Model Inversion: Tuning for Performance

- We currently average generating ≈ 1 input per second on networks such as InceptionV1.
  - We would like to increase this by an order of magnitude.
- In maximizing throughput, we have explored a number of parameters:
  - Optimization method (e.g., Adam, Gradient Descent, RMS, Momentum)
  - Learning Rate
  - Number of Iterations
  - Image Size
  - Batch Size
- Cost is proportional to the number of weights between the input and target layer.



batch (with diversity)



Visualization of a single CHANNEL of the InceptionV1 neural network

This particular channel seems to identify sports (it visualized tennis balls and soccer balls).

Step: 1 (0.001 s/image)



batch (with diversity)



Visualization of a single CHANNEL of the InceptionV1 neural network

This particular channel seems to identify sports (it visualized tennis balls and soccer balls).

Step: 50 (0.07 s/image)



batch (with diversity)



Visualization of a single CHANNEL of the InceptionV1 neural network

This particular channel seems to identify sports (it visualized tennis balls and soccer balls).

Step: 100 (0.14s/image)



batch (with diversity)



Visualization of a single CHANNEL of the InceptionV1 neural network

This particular channel seems to identify sports (it visualized tennis balls and soccer balls).

Step: 500 (0.37 s/image)



batch (with diversity)



Visualization of a single CHANNEL of the InceptionV1 neural network

This particular channel seems to identify sports (it visualized tennis balls and soccer balls).

Step: 1000 (0.75 s/image)



batch (with diversity)



Visualization of a single CHANNEL of the InceptionV1 neural network

This particular channel seems to identify sports (it visualized tennis balls and soccer balls).

Step: 2000 (1.5s/image)



batch (with diversity)



Visualization of a single CHANNEL of the InceptionV1 neural network

This particular channel seems to identify sports (it visualized tennis balls and soccer balls).

Step: 5000 (3.75 s/image)



# 1. Model Inversion: Tuning for Performance

• To improve performance, we need to perform inversion *deeper* in the network!



- We no longer synthesize images, but deep activations.
  - $\rightarrow$  Ongoing work

# 2. Unsupervised Learning

- We conjecture that adding a trigger distorts the activation distribution in a detectable way.
  - E.g., in this example, the concept of "yellow square" overrides the existing feature representation for "Stop Sign"
  - However, we need to identify which layer this occurs at...
  - And which objectives (class/layer/neuron/channel) most quickly show us trigger behavior



#### \*\* ongoing work

# 2. Unsupervised Learning: Motivation

- We created our own "BadNet" by fine-tuning on stop signs with yellow squares.
  - Activations are visualized from first fully connected layer, using UMAP.
  - On the Test data set, the trigger activations are clearly separated.



\* Recreating this behavior using only *synthetic* features is ongoing work.

# 3. Perturbation Analysis

- Use lightweight methods (not GAN!) because of time budget.
  - We now have a bunch of instances for each class, and a possible list of suspicious classes.
  - Use gradient descent to transform instances from class  $c_1$  to any other class.
  - Statistics on these transformation distances reveal irregularities (and possibly visualize trigger!)



#### Loss function:

- $\log(p(c_1))$ .
- L<sub>2</sub> penalty on change
- entropy of output class distribution

Similar to Neural Cleanse, but slightly different. We start from possible source classes and try to identify a target trigger class by finding sharply peaked target class distribution (via entropy term).

(move away from class  $c_1$ ) (keep changes small, because trigger should be small) (we want sharply peaked target class distribution)

A related approach, that requires test data, is taken in:

Wang, et al. "Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks"

# Conclusion

- Increasingly, 3<sup>rd</sup> party models are deployed / updated for various services.
  - Training data/methodology unknown or proprietary.
  - Many opportunities for tampering along the supply chain.
- Many quality assurance methods on deep nets assume test data is available.
- Fast, practical model inversion has not been deeply studied as a solution.
  - We believe we have a good one!



# **Future Work**

- Test and refine methodology on wide variety of backdoored neural networks.
- Additional unsupervised learning: Matrix/Tensor factorization of neuron activations across layers/classes to understand and visualize how classes are composed.
  - Would enable a visual, exploratory analysis.

#### 2. Malware



#### Background

- Static Analysis: Probe for malware without running the program.
- **Dynamic Analysis**: Run executable in controlled environment, determine its properties.
- Multiple categories of malware:
  - Backdoors, downloaders, botnets, rootkits, etc.
- Malware Analysis and Data Science:
  - In static analysis, a binary is often treated as a "document," analyzed using NLP features.
  - Traditional malware analysis is done on a case by case basis
    - We are interested in mining large sets of malicious executables.

#### Data Set: Static Analysis

- Initial work has been on one challenge problem.
- Microsoft Malware Classification Challenge. ≈ 10K malicious files from 9 different malware families (≈ 500 GB).
- Augmented with 77 benign files from the Windows common library.



#### Feature Extraction: n-grams

#### Executable *i*

| 00401270 | 33         | C0 | C2 | 04 | 00 | СС |
|----------|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 00401280 | B8         | FE | FF | FF | FF | С3 | CC | СС |
| 00401290 | <b>B8</b>  | 09 | 00 | 00 | 00 | С3 | СС | СС | CC | СС |
| 004012A0 | B8         | 02 | 00 | 00 | 00 | С3 | CC | СС |
| 004012B0 | <b>B</b> 8 | 01 | 00 | 00 | 00 | С3 | CC |
| 004012C0 | <b>B</b> 8 | FØ | FF | FF | FF | C2 | 04 | 00 | CC |

| 4-Gram       | Count |
|--------------|-------|
|              |       |
| B8 09 00 00: | 5 + 1 |
|              |       |
|              |       |
|              |       |
|              |       |

Counts for executable *i* 

Simple example:

- 1. For each file, a table is stored of the frequency of each gram of *n* tokens.
- 2. The top *k* grams over all files are then selected.
- 3. The frequency vectors for each file are then fed to a classification algorithm.
- Problem: As *n* grows, the number of possible *n*-grams explodes.
- Features over all files is a sparse matrix of size (#files X #grams).
- Intermediate memory storage becomes a bottleneck.

#### Feature Extraction: hash-grams<sup>1</sup>

# Executable i 00401270 33 C0 C2 04 00 CC CC



Feed each gram to a rolling hash function.

Memory use is now limited by the size of the hash table.

Features over all files is a sparse matrix of size (#files X #grams).

Given the distribution of most text, the features recovered are just as useful. (But the original strings are lost!)

<sup>1</sup>Source: Edward Raff and Charles Nicholas. 2018. Hash-Grams: Faster N-Gram Features for Classification and Malware Detection.



#### Tensor Approach: Allow for New Dimensions



This tensor is built by concatenating a bunch of feature vectors.



#### **CP** Decomposition



Express a tensor as a sum of Rank-1 tensors.

Useful for unsupervised, exploratory analysis, visualization, and feature extraction. Breaks curse of dimensionality.

• A rank R CP decomposition of the same tensor only requires d\*n\*R storage.

#### **CP Decomposition of Grams**

The factors of the CP decomposition can be used to construct new feature vectors for each file (or for each gram or location).



- We concatenate all of the feature vectors for the "file" mode into a matrix.
- This then becomes the input for any classification algorithm.

# Approach: Top-K Tensor

- We construct n-gram and hash-gram tensors from 2256 binaries from the Microsoft Kaggle malware data set.
- Dictionary consists of the top 4000 grams present in the data.
  - Involves scanning and sorting all the n-grams present in the dataset.
- T(File,Location,Gram) = Count
  - T('mspaint', '.bss', 'FEFF7E') will return the number of times the 3-gram 'FEFF7E' is found in the .bss section of the executable 'mspaint'.



 $2256 \times 10 \times 4000$ Density (n-grams): 28.7% Density (Hash-Grams): 44.7%



# Visualization on CP Decomposition

- We compute rank 10 CP decomposition of the hash-gram tensor.
- Original tensor is ≈**1.5 GB**.
- The CP decomposition takes a matter of minutes on a single node using SPLATT<sup>2</sup>.
- The factor we produce is under **1 MB** in size.
- Class structure is visible directly from the file factor matrix of size 2256x10 (visualized using t-SNE).



Top-K Hash-Grams

## **Classification Results**

- Supervised Learning
- Performed on small CP factor.
- Train on 10% of data.
- Results from hash-grams are presented (they had slightly higher accuracy than n-grams!)

KNN works well on the CP factor:

95% accuracy on determining class of malware.

99% on determining benign vs. malicious.

SVM does not work well (there are many clusters for each class!)

| Tensor | Algorithm | Accuracy10 | Accuracy2 |
|--------|-----------|------------|-----------|
| Тор-К  | KNN       | 0.949      | 0.998     |
| Тор-К  | SVM       | 0.426      | 0.966     |

Accuracy10: Correctly determines class of malware. Accuracy2: Correctly determines Benign vs. Malicious.

# Approach: Co-Occurrence Tensor

- Common feature construction used in the NLP community to generate word embeddings
- Counts co-occurrence of words in a window, *without* considering order.
- The word-subtensor is symmetric (efficient storage).
- C(Location, Word, Word, Word, Word) = Count
  - C(6,'FF','7A','D3','3A') will give the number of times these words cooccurred in bin 6.
  - Gram co-occurrences can be counted either consecutively or in a windowed manner.
  - Second pass needed over data to generate feature vectors of file.
  - Pointwise Mutual Information pre-processing.



10 × 257 × 257 × 257 × 257 Density Counts: 0.48% Density PMI: 0.09%

## **Feature Extraction I**

- Tensor decomposition can preserve class structure in a highly-compressed form.
  - Can we combine feature extraction and tensor decomposition into a single-pass?



- For instance, consider building a sparse tensor out of the words themselves.
  - Nonzero frequencies occur when (word1, word2, word3) occurs in specimen *i*.
  - If we no longer consider order, we get symmetric co-occurrence subtensors.
  - This construction has already been shown to be effective for feature extraction in language models<sup>3</sup>.
  - We have used this method on subsets of the Microsoft Kaggle malware set and achieved better unsupervised learning performance.

#### **Feature Extraction II**

- The **Tucker** decomposition is highly effective for compression.
  - Creates a small "core" tensor and associated factor matrices.
- A recent algorithm performs an approximate Tucker decomposition in a single pass using random projections<sup>4</sup> (and is also highly parallelizable).



- We are implementing this method in Python + Tensorly.
- For symmetric (e.g., co-occurrence) tensors, the core is also symmetric

<sup>4</sup>Sun, et al. Tensor Random Projection for Low Memory Dimension Reduction

# Future Work: Dynamic Analysis

- Data sets that include a *temporal* component are natural candidates for tensor decomposition.
- We plan on decomposing features extracted from the massive Malrec<sup>5</sup> data set.
  - e.g., Memory accesses, system calls, network calls over time are all readily available.
- Online algorithms for CP and Tucker are of particular interest due to the massive volume of data, and because the data is naturally streaming in the real world.
- However, sparsity will present a challenge.

47

#### Conclusion

- Feature extraction has been the major bottleneck in our static analysis studies.
- For small ranks, a CP decomposition preserves meaningful features.
- This suggests that online methods will be very effective at efficiently extracting features from large collections of files.
- Effective online methods will enable scalable dynamic analysis.

|  |  |  |  |  |  | + - |  |
|--|--|--|--|--|--|-----|--|
|  |  |  |  |  |  |     |  |

| + | <b>dr</b> m <sup>*</sup> |  |  |  |  |  | *The Arm trademarks featured in this presentation are registered<br>trademarks or trademarks of Arm Limited (or its subsidiaries) in<br>the US and/or elsewhere. All rights reserved. All other marks<br>featured may be trademarks of their respective owners. |
|---|--------------------------|--|--|--|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---|--------------------------|--|--|--|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

www.arm.com/company/policies/trademarks