
Confidential © 2019 Arm Limited

Software Data Analytics Framework for Detecting
Malware and Machine Learning Back Doors

Casey Battaglino, Mark Nutter, Doug Joseph

2 Confidential © 2019 Arm Limited

IoT Immune System:
Real Time Detection of
Multiple Attack Vectors

DNN Model Attacks

Iot Botnet Attacks

SW/FW Malware

HW Trojans

3 Confidential © 2019 Arm Limited

1. DRAFFT: Detecting back door Trojans in deep learning models.

2. Malware: Scalable detection/classification of Malware.

Two Projects Covered in this Presentation:

in collaboration with:

in collaboration with:

4 Confidential © 2019 Arm Limited

1. DRAFFT
(“DReAming of Features to Find Trojans”)

(AKA “Riding on the coattails of Google Deep Dream”)

5 Confidential © 2019 Arm Limited

Background: Backdoor Trojans in Neural Networks

Trigger: Yellow sticky note on Stop Sign

Backdoors do not reduce performance of the model unless the trigger is present.

Therefore, are very difficult to detect (trigger is not present in any test platform).

6 Confidential © 2019 Arm Limited

Background: Backdoor Trojans in Neural Networks

Speed Stop

Speed

“Stop Sign” “Speed Sign”

Backdoors are different from adversarial noise:

They are deliberately pre-inserted into the model,

and must be simple to express in the real world.

Source: Gu, et al. 2019 (BadNets)

Source: Gu, et al. 2019 (BadNets)

”Car”

+
”Bicycle”

=

x 0.05

x 0.02“Hello” “Goodbye”

+ =

7 Confidential © 2019 Arm Limited

training data tampered data

Example 1: outsourced training attack

- Attack public data sets: insert triggers + bad labels.
- Attack training platforms: modify inputs/labels during training.

“speed”

Background: Backdoors in Neural Networks

Models are vulnerable across the entire machine learning supply chain.

Example 2: transfer learning attack

fine-tune

“speed”

- Attack pre-trained models: fine-tune with malicious data.
- Federated Learning

publicly available

model

8 Confidential © 2019 Arm Limited

Background: Backdoors in Neural Networks
Backdoors can survive transfer learning!

Source: Gu, et al. 2019 (BadNets)

9 Confidential © 2019 Arm Limited

TrojAI Challenge

- A team is presented with 1000 deep classification models.
- All of them will belong to some high-level domain (Visual, Text, or Audio), with 5 possible classes.
- Given 24 hours on a CPU-GPU node, return the probability of each model containing a backdoor.

- *** Access to sample input data will be severely restricted (and eventually revoked).

…

…

…

… … …

10 Confidential © 2019 Arm Limited

Objective

• Given some model and no or little concept of its training data, applications, etc.

• How can we audit it for backdoors?

• Can we “reverse engineer” the class structure of the network?

• Can we do so efficiently (e.g., in 1.5 min)?

?

11 Confidential © 2019 Arm Limited

Our Approach

• We can visualize intermediate layer activations to build intuition, by generating synthetic inputs.

inputs

intermediate layer

activations for each input

low-dimensional embedding / projection reveals clusters

e.g., using UMAP or t-SNE (map high dimensional space into a low one)

(Source: Kahng, et al. 2018)

Typically, each successive layer of a neural
network will create a more distinct cluster of
activations, as shown on the right.

12 Confidential © 2019 Arm Limited

Our Approach : Detection Pipeline

1. synthesize features 2. Learn distributions 3. learn on boundaries / perturbations

model M

p(t|M)

model inversion discover outlying classes
measure transitions

between suspicious classes

using optimization

DRAFFT: DReAming of Features to Find Trojans

13 Confidential © 2019 Arm Limited

Our Approach : Time Budgets

1. synthesize features 2. learn on distributions 3. learn on boundaries / perturbations

model M

p(t|M)

model inversion discover outlying classes
measure transitions

between suspicious classes

using optimization

unsup. learning

≈ 1.5 minutes per model: performance matters at every step.

example budget:

model inversion refinement + boundary perturbation

≈ 45s ≈ 10s ≈ 30s

14 Confidential © 2019 Arm Limited

1. Model Inversion

• We may have little or no test data.
• We want to synthesize a wide variety of inputs that activate the features that compose each class.

• Using gradient descent, we can form inputs that maximize a particular objective:
• e.g., {neuron activation, layer activation, class activation}
• A lightweight model inversion (a GAN is effective but can take hours).

M

Method Inspired by: Olah, et al., "Feature Visualization", Distill, 2017.

forward pass: find activation of neuron / layer / class

backward pass: compute gradient to modify input

to increase activation of neuron/layer/class

15 Confidential © 2019 Arm Limited

1. Model Inversion

• We can now analyze the activations of these inputs at a given layer.

M

visualization of embedding

at some layer

Method Inspired by: Olah, et al., "Feature Visualization", Distill, 2017.

16 Confidential © 2019 Arm Limited

• By adding a penalty term increasing cosine distance, we sample more diverse features.
• Pushes multiple examples to be different from each other
• Gives us a better representation of a class.

1. Model Inversion: Diversity

M

visualization of embedding

at some layer

Method drawn from: Olah, et al., "Feature Visualization", Distill, 2017.

17 Confidential © 2019 Arm Limited

1. Model Inversion: Diversity Example

• Example: We synthesize 160 inputs from 5 classes with increasing diversity (ImageNet)
• We visualize features from 1st fully connected layer using UMAP.
• With diversity too low, inputs are too similar to explore class structure.
• With diversity too high, class structure is lost.

diversity parameter: 0.0001 0.001 0.01

… What do these points correspond to? (Next Slide)

18 Confidential © 2019 Arm Limited

1. Model Inversion: Class Activation Atlas

Diverse Representations

of

“Traffic Signal”

Visualizing the diverse representation of a class: Class Activation Atlas

Technique From: S. Carter, Z. Armstrong, L. Schubert, I. Johnson, and C. Olah. Activation atlas. Distill, 2019. https://distill.pub/2019/activation-atlas.

A class may be composed of many different features.

19 Confidential © 2019 Arm Limited

1. Model Inversion: Tuning for Performance

• We currently average generating ≈ 1 input per second on networks such as InceptionV1.
• We would like to increase this by an order of magnitude.

• In maximizing throughput, we have explored a number of parameters:
• Optimization method (e.g., Adam, Gradient Descent, RMS, Momentum)
• Learning Rate
• Number of Iterations
• Image Size
• Batch Size

• Cost is proportional to the number of weights between the input and target layer.

maximize class i

optimize input

20 Confidential © 2019 Arm Limited

1. Model Inversion: Learning Rate vs. Iteration

0.0001

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

1

le
ar

n
in

g
ra

te

batch (with diversity)

Step: 1 (0.001 s/image)

optimizer: adam

Visualization of a single
CHANNEL of the InceptionV1
neural network

This particular channel seems to
identify sports (it visualized
tennis balls and soccer balls).

21 Confidential © 2019 Arm Limited

0.0001

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

1

le
ar

n
in

g
ra

te

batch (with diversity)

Step: 50 (0.07 s/image)

optimizer: adam

1. Model Inversion: Learning Rate vs. Iteration

Visualization of a single
CHANNEL of the InceptionV1
neural network

This particular channel seems to
identify sports (it visualized
tennis balls and soccer balls).

22 Confidential © 2019 Arm Limited

0.0001

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

1

le
ar

n
in

g
ra

te

batch (with diversity)

Step: 100 (0.14s/image)

optimizer: adam

1. Model Inversion: Learning Rate vs. Iteration

Visualization of a single
CHANNEL of the InceptionV1
neural network

This particular channel seems to
identify sports (it visualized
tennis balls and soccer balls).

23 Confidential © 2019 Arm Limited

0.0001

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

1

le
ar

n
in

g
ra

te

batch (with diversity)

Step: 500 (0.37 s/image)

optimizer: adam

1. Model Inversion: Learning Rate vs. Iteration

Visualization of a single
CHANNEL of the InceptionV1
neural network

This particular channel seems to
identify sports (it visualized
tennis balls and soccer balls).

24 Confidential © 2019 Arm Limited

0.0001

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

1

le
ar

n
in

g
ra

te

batch (with diversity)

Step: 1000 (0.75 s/image)

optimizer: adam

1. Model Inversion: Learning Rate vs. Iteration

Visualization of a single
CHANNEL of the InceptionV1
neural network

This particular channel seems to
identify sports (it visualized
tennis balls and soccer balls).

25 Confidential © 2019 Arm Limited

0.0001

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

1

le
ar

n
in

g
ra

te

batch (with diversity)

Step: 2000 (1.5s/image)

optimizer: adam

1. Model Inversion: Learning Rate vs. Iteration

Visualization of a single
CHANNEL of the InceptionV1
neural network

This particular channel seems to
identify sports (it visualized
tennis balls and soccer balls).

26 Confidential © 2019 Arm Limited

0.0001

0.0005

0.001

0.005

0.01

0.05

0.1

0.5

1

le
ar

n
in

g
ra

te

batch (with diversity)

Step: 5000 (3.75 s/image)

optimizer: adam

1. Model Inversion: Learning Rate vs. Iteration

Visualization of a single
CHANNEL of the InceptionV1
neural network

This particular channel seems to
identify sports (it visualized
tennis balls and soccer balls).

27 Confidential © 2019 Arm Limited

• To improve performance, we need to perform inversion deeper in the network!

• We no longer synthesize images, but deep activations.
• → Ongoing work

1. Model Inversion: Tuning for Performance

28 Confidential © 2019 Arm Limited

2. Unsupervised Learning
• We conjecture that adding a trigger distorts the activation distribution in a detectable way.

• E.g., in this example, the concept of “yellow square” overrides the existing feature representation for “Stop Sign”

• However, we need to identify which layer this occurs at…

• And which objectives (class/layer/neuron/channel) most quickly show us trigger behavior

** ongoing work

29 Confidential © 2019 Arm Limited

2. Unsupervised Learning: Motivation
• We created our own “BadNet” by fine-tuning on stop signs with yellow squares.

• Activations are visualized from first fully connected layer, using UMAP.
• On the Test data set, the trigger activations are clearly separated.

GoodNet: Activations on Test Input BadNet: Activations on Test Input

“speed”

speed

* Recreating this behavior using only synthetic features is ongoing work.

30 Confidential © 2019 Arm Limited

3. Perturbation Analysis

• Use lightweight methods (not GAN!) because of time budget.
• We now have a bunch of instances for each class, and a possible list of suspicious classes.
• Use gradient descent to transform instances from class c1 to any other class.
• Statistics on these transformation distances reveal irregularities (and possibly visualize trigger!)

gradient descent
on layer-wise activations

Loss function:
- log(p(c1)). (move away from class c1)
- L2 penalty on change (keep changes small, because trigger should be small)
- entropy of output class distribution (we want sharply peaked target class distribution)

class c1

?

other class

∆

A related approach, that requires test data, is taken in:

Wang, et al. "Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks"

Similar to Neural Cleanse, but slightly
different. We start from possible source
classes and try to identify a target trigger
class by finding sharply peaked target
class distribution (via entropy term).

31 Confidential © 2019 Arm Limited

Conclusion

• Increasingly, 3rd party models are deployed / updated for various services.
• Training data/methodology unknown or proprietary.
• Many opportunities for tampering along the supply chain.

• Many quality assurance methods on deep nets assume test data is available.

• Fast, practical model inversion has not been deeply studied as a solution.
• We believe we have a good one!

?

32 Confidential © 2019 Arm Limited

Future Work

• Test and refine methodology on wide variety of backdoored neural networks.

• Additional unsupervised learning: Matrix/Tensor factorization of neuron activations
across layers/classes to understand and visualize how classes are composed.
• Would enable a visual, exploratory analysis.

33 Confidential © 2019 Arm Limited

2. Malware

34 Confidential © 2019 Arm Limited

Background

• Static Analysis: Probe for malware without running the program.

• Dynamic Analysis: Run executable in controlled environment, determine its properties.

• Multiple categories of malware:
• Backdoors, downloaders, botnets, rootkits, etc.

• Malware Analysis and Data Science:

• In static analysis, a binary is often treated as a “document,” analyzed using NLP features.
• Traditional malware analysis is done on a case by case basis

– We are interested in mining large sets of malicious executables.

35 Confidential © 2019 Arm Limited

Data Set: Static Analysis

vocabulary: {0..255}hex dump

disassembly vocabulary: complex strings

- Initial work has been on one challenge problem.
- Microsoft Malware Classification Challenge. ≈ 10K malicious files from 9 different malware families (≈ 500 GB).
- Augmented with 77 benign files from the Windows common library.

36 Confidential © 2019 Arm Limited

Feature Extraction: n-grams

Executable i

4-Gram Count

.

B8 09 00 00: 5 + 1

.

1. For each file, a table is stored of the frequency of each gram of n tokens.

2. The top k grams over all files are then selected.

3. The frequency vectors for each file are then fed to a classification algorithm.

• Problem: As n grows, the number of possible n-grams explodes.

• Features over all files is a sparse matrix of size (#files X #grams).

• Intermediate memory storage becomes a bottleneck.

Simple example:

Counts for executable i

37 Confidential © 2019 Arm Limited

Feature Extraction: hash-grams1

Hash-Gram Count

.

f0fda5863031: 7 + 1

.

h(x)

1Source: Edward Raff and Charles Nicholas. 2018. Hash-Grams: Faster N-Gram Features for Classification and Malware Detection.

Feed each gram to a rolling hash function.

Memory use is now limited by the size of the hash table.

Features over all files is a sparse matrix of size (#files X #grams).

Given the distribution of most text, the features recovered are just as useful.

(But the original strings are lost!)

Executable i

38 Confidential © 2019 Arm Limited

Tensor Approach: Allow for New Dimensions
gr

am
 c

o
u

n
ts

location in file

T

G
ra

m
s

Location

…

Stack feature vectors

This tensor is built by concatenating a bunch of feature vectors.

39 Confidential © 2019 Arm Limited

CP Decomposition

𝒳 ≈
𝑎1

𝑏1

𝑐1

+

𝑎2

𝑏2

𝑐2

+ … +

𝑎𝑅

𝑏𝑅

𝑐𝑅

Express a tensor as a sum of Rank-1 tensors.

Useful for unsupervised, exploratory analysis, visualization, and feature extraction.

Breaks curse of dimensionality.

R factors

• A rank R CP decomposition of the same tensor only requires d*n*R storage.

40 Confidential © 2019 Arm Limited

CP Decomposition of Grams

≈ + + … +T

G
ra

m
s

Location

…
#f

ile
s

R

feature vector for file i

The factors of the CP decomposition can be used to construct new feature vectors

for each file (or for each gram or location).

• We concatenate all of the feature vectors for the ”file” mode into a matrix.

• This then becomes the input for any classification algorithm.

41 Confidential © 2019 Arm Limited

Approach: Top-K Tensor

• We construct n-gram and hash-gram tensors from 2256
binaries from the Microsoft Kaggle malware data set.

• Dictionary consists of the top 4000 grams present in the data.
• Involves scanning and sorting all the n-grams present in the dataset.

• T(File,Location,Gram) = Count
• T(‘mspaint’, ‘.bss’, ‘FEFF7E’) will return the number of times the 3-gram

‘FEFF7E’ is found in the .bss section of the executable ‘mspaint’.

TFi
le

s

Location

2256 × 10 × 4000

Density (n-grams): 28.7%

Density (Hash-Grams): 44.7%

42 Confidential © 2019 Arm Limited

Visualization on CP Decomposition

Top-K Hash-Grams

- We compute rank 10 CP decomposition
of the hash-gram tensor.

- Original tensor is ≈1.5 GB.

- The CP decomposition takes a matter of minutes
on a single node using SPLATT2.

- The factor we produce is under 1 MB in size.

- Class structure is visible directly from the file factor
matrix of size 2256x10 (visualized using t-SNE).

2Smith, et al. SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication

43 Confidential © 2019 Arm Limited

Classification Results

• Supervised Learning

• Performed on small CP factor.

• Train on 10% of data.

• Results from hash-grams are presented
(they had slightly higher accuracy than
n-grams!)

Tensor Algorithm Accuracy10 Accuracy2

Top-K KNN 0.949 0.998

Top-K SVM 0.426 0.966

Accuracy10: Correctly determines class of malware.

Accuracy2: Correctly determines Benign vs. Malicious.KNN works well on the CP factor:

95% accuracy on determining class of malware.

99% on determining benign vs. malicious.

SVM does not work well (there are many clusters for each class!)

44 Confidential © 2019 Arm Limited

Approach: Co-Occurrence Tensor

• Common feature construction used in the NLP community to
generate word embeddings

• Counts co-occurrence of words in a window, without
considering order.

• The word-subtensor is symmetric (efficient storage).

• C(Location, Word, Word, Word, Word) = Count
• C(6,’FF’,’7A’,’D3’,’3A’) will give the number of times these words co-

occurred in bin 6.
• Gram co-occurrences can be counted either consecutively or in a

windowed manner.
• Second pass needed over data to generate feature vectors of file.
• Pointwise Mutual Information pre-processing.

C

Lo
ca

ti
o

n

Word

10 × 257 × 257 × 257 × 257

Density Counts: 0.48%

Density PMI: 0.09%

45 Confidential © 2019 Arm Limited

Feature Extraction I

• Tensor decomposition can preserve class structure in a highly-compressed form.
• Can we combine feature extraction and tensor decomposition into a single-pass?

• For instance, consider building a sparse tensor out of the words themselves.
• Nonzero frequencies occur when (word1, word2, word3) occurs in specimen i.
• If we no longer consider order, we get symmetric co-occurrence subtensors.
• This construction has already been shown to be effective for feature extraction in language models3.
• We have used this method on subsets of the Microsoft Kaggle malware set and achieved better

unsupervised learning performance.

x

x x

word

w
o

rd

Sharan, et al. Orthogonalized ALS: a theoretically principled

3Sharan, et al. Orthogonalized ALS: a theoretically principled tensor decomposition algorithm for practical use

46 Confidential © 2019 Arm Limited

Feature Extraction II

• The Tucker decomposition is highly effective for compression.
• Creates a small “core” tensor and associated factor matrices.

• A recent algorithm performs an approximate Tucker decomposition in a single pass
using random projections4 (and is also highly parallelizable).

• We are implementing this method in Python + Tensorly.

• For symmetric (e.g., co-occurrence) tensors, the core is also symmetric

𝒳 ≈

4Sun, et al. Tensor Random Projection for Low Memory Dimension Reduction

47 Confidential © 2019 Arm Limited

Future Work: Dynamic Analysis

• Data sets that include a temporal component are natural candidates for tensor
decomposition.

• We plan on decomposing features extracted from the massive Malrec5 data set.
• e.g., Memory accesses, system calls, network calls over time are all readily available.

• Online algorithms for CP and Tucker are of particular interest due to the massive volume
of data, and because the data is naturally streaming in the real world.

• However, sparsity will present a challenge.

5https://giantpanda.gtisc.gatech.edu/malrec/dataset/

48 Confidential © 2019 Arm Limited

Conclusion

• Feature extraction has been the major bottleneck in our static analysis studies.

• For small ranks, a CP decomposition preserves meaningful features.

• This suggests that online methods will be very effective at efficiently extracting features
from large collections of files.

• Effective online methods will enable scalable dynamic analysis.

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

Confidential © 2019 Arm Limited

