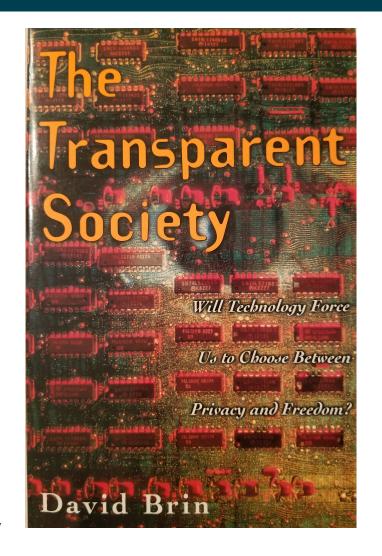
Frederick National Laboratory for Cancer Research

sponsored by the National Cancer Institute

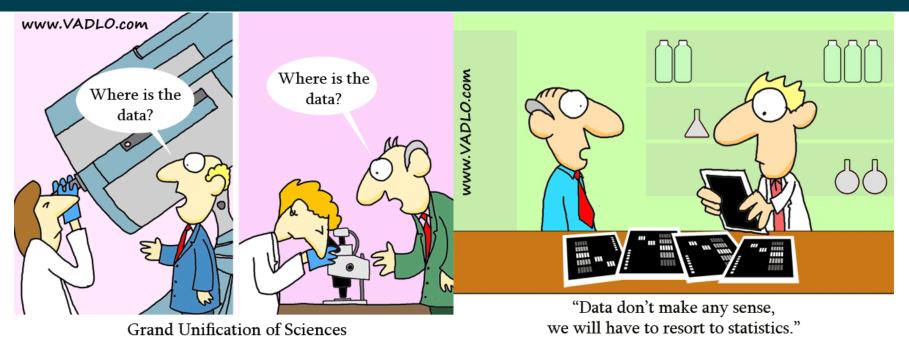
Data as the Driver of Biomedical Research: Why aren't we going faster?

Jack R. Collins Director, Advanced Biomedical/Computational Sciences, FNLCR/NCI Date October 10, 2019


DEPARTMENT OF HEALTH AND HUMAN SERVICES • National Institutes of Health • National Cancer Institute

Frederick National Laboratory is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc., for the National Cancer Institute

Acknowledgements and Disclaimer


- Curtis Lisle, KnowledgeVis
- Yanling Liu, ABCS
- Hyun Jung, ABCS
- Uma Mudunuri, ABCS
- Our Collaborators and Sponsors at FNLCR, NCI/NIH
- The CLSAC organizers for inviting me.

Disclaimer: I am not an attorney or an expert in data privacy, the legal framework and rules associated with privacy, or in the overall polcy issues involved with data sharing. I do have experience trying to get data for biomedical research, navigating many of the rules, and observing and developing technologies that are outpacing policy. Opinions are, of course, my own.

Frederick National Laboratory

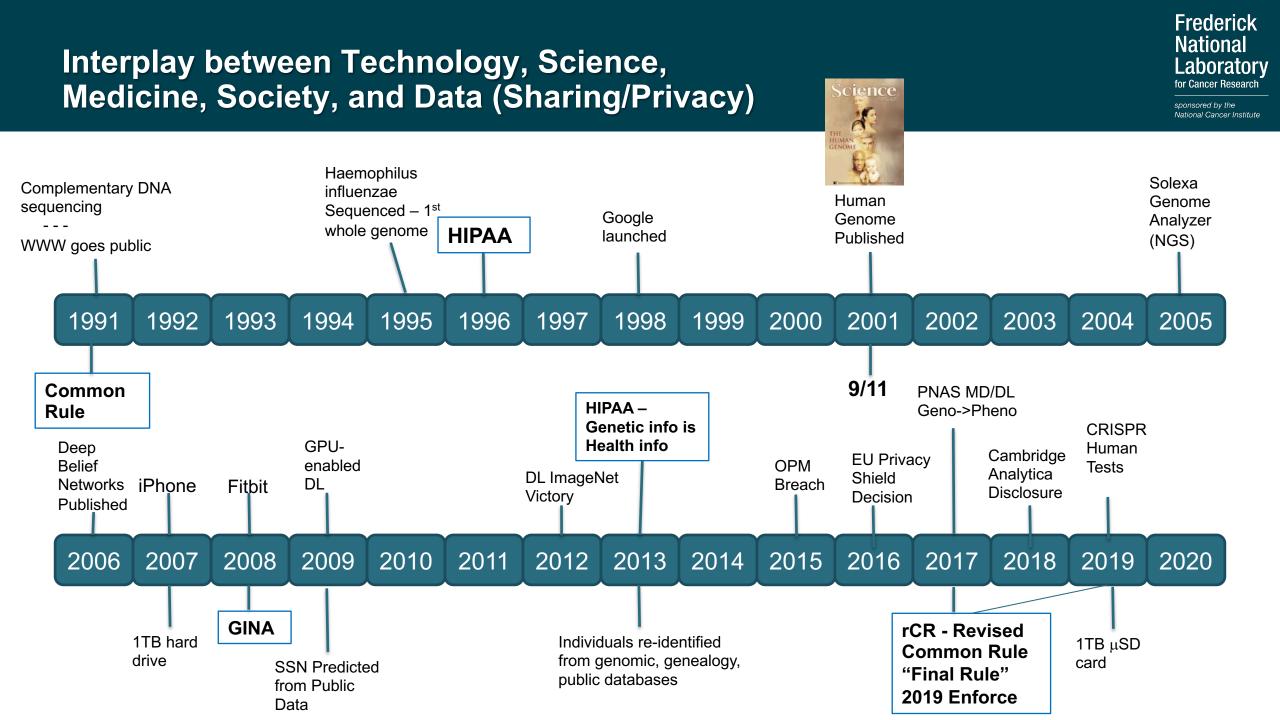
Biology is **Data Driven** and is dependent on proper data management, integration/sharing, and analyses

- Genomic Sequencing
- RNA-Seq
- Image Analysis
- Microarray
- Protein-Protein Interactions
- Structural Biology
- Computational Oncology

o Machine Learning / Al

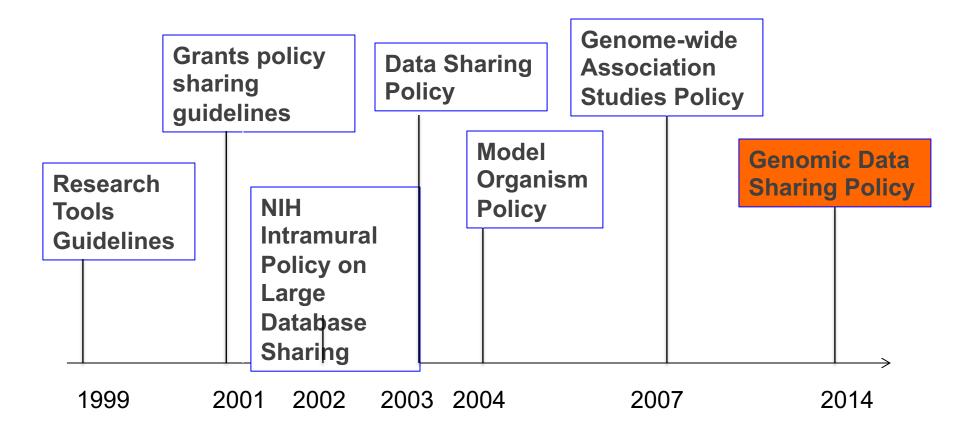
Frederick National

Laboratory


- Predictive Models
- Model Systems

Overview of Presentation

- Data sharing and privacy issues profoundly affect biomedical research, especially in the area of (era of) big data, computational/data sciences, machine learning/Al, and evaluating predictive models.
- We will address data sharing policies at NIH (rules vs reality), and issues that make data sharing (data reuse) challenging.
- We will also discuss the fact that data is often useless unless it's properly annotated and documented so that it can facilitate productive use of the data.
- Data, and the analysis, is Global.
- Examples of real-world workflows, challenges, and lessons learned will be discussed.



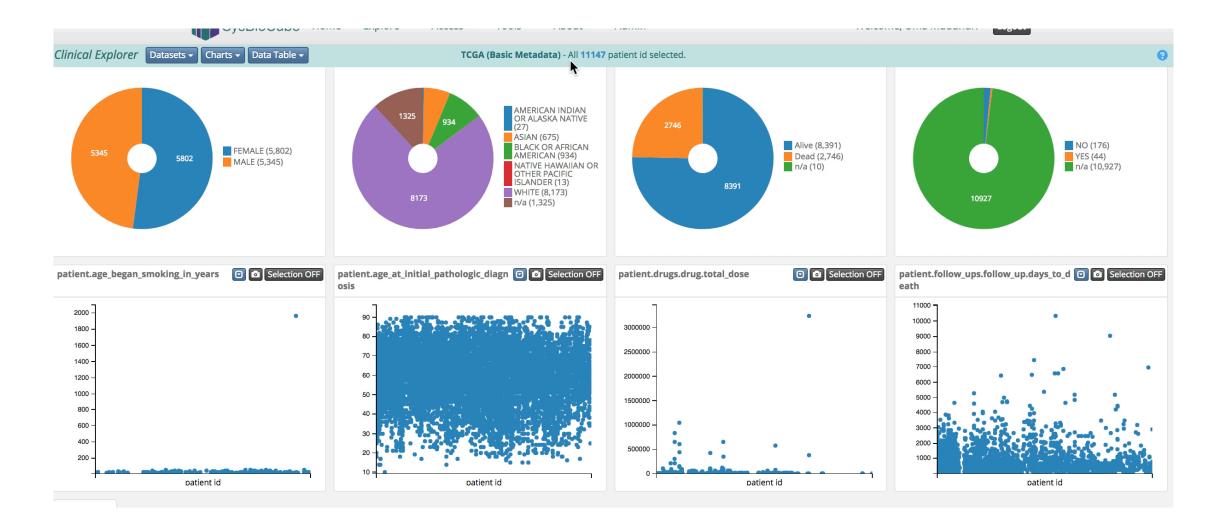
NIH: A Culture of Sharing

sponsored by the National Cancer Institute

"Sharing research data supports the NIH mission"

NIH Genomic Data Sharing Policy, 2014

Data Management Challenges Primarily Human Data


- Need to know what you have
- Properly Annotated / Structured
- Ontologies play important role
- Determine what is PII / PHI
- Is it anonymized? Can it be re-identified?
- Who "owns" the data? Are there "special rules"? Is it published? Confidentiality?

Frederick National

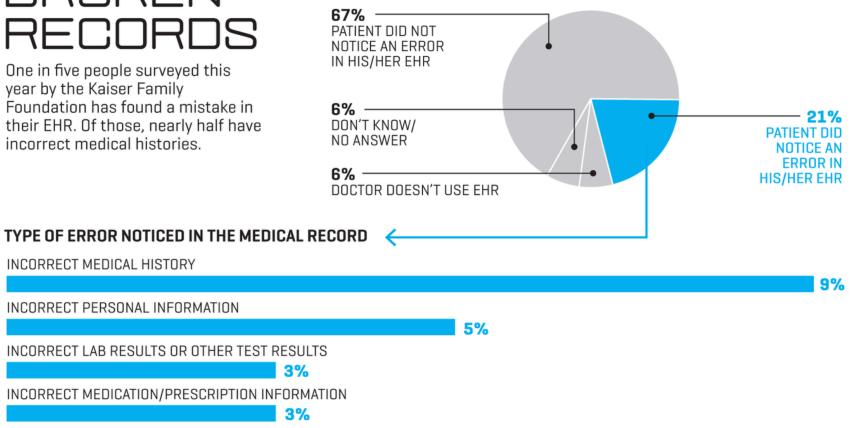
Laboratory

- Is there an IRB / Consent associated?
- And can be harder than first thought
 - Especially if we're reactive rather than proactive

Exploring and Understanding the Data Choosing quality data (relevant cohorts)

Frederick National Laboratory for Cancer Research

Data Management has Consequences (Fortune Magazine, April 2019)


FORTUNE

Death by a Thousand Clicks: Where Electronic Health Record...

One in five people surveyed this year by the Kaiser Family Foundation has found a mistake in their EHR. Of those, nearly half have incorrect medical histories.

(in)

y

f

BILLING ERRORS/ISSUES 1%

Frederick National

Laboratory

for Cancer Research sponsored by the National Cancer Institute

Data Sharing Balance between Risks and Benefits

sponsored by the National Cancer Institute

Risks

- Personal
- Family
- Societal
- ...

Benefits

- Facilitates Research
- Can enable insights

. . .

- Especially in instances of rare events

Federal Regulations Governing Human Subjects Research

Published in 1991, The Federal Policy for the Protection of Human Subjects-also known as the "Common Rule" - establishes the baseline standard of ethics for government-funded research in the United States. The Common Rule requires all federally funded research projects to obtain informed consent from each participant prior to their participation. Participants must be informed of all the potential risks of the particular study, including risks associated with release of their private information. Informed consents for genomic research should clarify the uses of research results, including with whom the information will be shared. It has been shown that, when given control over when and with whom their research data is shared, most individuals are eager to participate in research studies, fueling scientific discovery and medical progress. For further information about informed consent in genomics and guidance for researchers or IRB members, please see the Informed Consent for Genomics Research Resource.

January 19, 2017--Final rule implementing major revisions to the Common Rule

Summary : This final rule strengthens protections for people who volunteer to participate in research, while ensuring that the oversight system does not add inappropriate administrative burdens, particularly to low-risk research. It also allows more flexibility in keeping with today's dynamic research environment. The final rule will now generally expect consent forms to include a concise explanation – at the beginning of the document – of the key information that would be most important to individuals contemplating participation in a particular study, including the purpose of the research, the risks and benefits, and appropriate alternative treatments that might be beneficial to the prospective subject.

tional Cancer Institut

Genetic Information Nondiscrimination Act (GINA)

The <u>Genetic Information and Nondiscrimination Act</u> of 2008 (GINA) protects the genetic privacy of the public, including research participants. The passage of GINA makes it illegal for health insurers or employers from requesting or requiring genetic information of an individual or of family members (and further prohibits the discriminatory use of such information).

HIPAA

The <u>Health Insurance Portability and Accountability Act</u> (HIPAA) Privacy Rule establishes protections to maintain the confidentiality of patients' individually identifiable health information. Such information held by entities covered by HIPAA, such as a health care provider or insurance company, is defined as Protected Health Information (PHI) and there are limits on when and with whom PHI may be shared. In 2013, as required by the passage of the <u>Genetic Information Nondiscrimination Act</u>, the Privacy Rule was modified to establish that <u>genetic information is health information</u> protected by the Privacy Rule to the extent that such information is individually identifiable, and that HIPAA covered entities may not use or disclose protected health information that is genetic information for underwriting purposes. There are no such restrictions on the use or disclosure of PHI that has been <u>de-identified</u>.

Genomic Data Sharing and Privacy @NIH

- sponsored by the National Cancer Institute
- To advance genomics research, NIH houses a number of databases through which
 researchers can share de-identified genomic data. Given the need to consider participant
 privacy, it is important to minimize the possibility that any research participants are identified.
 Indeed, a <u>study</u> published in 2013 demonstrated that it is possible to re-identify research
 participants using genomic data from one such database alongside genealogical databases
 and public records. NIH therefore controls access to sensitive or potentially identifiable
 information held in these databases to ensure that the privacy of the research participants is
 respected. (See Genomic Data Sharing Policy below.) In addition, NIH issues <u>Certificates of
 Confidentiality</u> to enable NIH-funded researchers to limit access to research participant
 information held at grantee institutions.
- People have a right to keep their medical information, and that of their dependents, private. Yet medical records are a rich source of research data, and it is in the interest of medical research, and thus everyone's health and well-being, that scientists have access to large numbers of participants and quantities of data. How do we strike the proper balance between scientific progress and patient privacy? Federal laws, like the <u>Common Rule</u> and the <u>Health</u> <u>Insurance Portability and Accountability Act</u> (HIPAA) aim to strike that delicate balance.
- https://www.genome.gov/about-genomics/policy-issues/Privacy

Anonymization

The following identifiers of the individual or of relatives, employers, or household members of the individual must be removed to achieve the "safe harbor" method of de-identification: (A) Names; (B) All geographic subdivisions smaller than a State, including street address, city, county, precinct, zip code, and their equivalent geocodes, except for the initial three digits of a zip code if, according to the current publicly available data from the Bureau of Census (1) the geographic units formed by combining all zip codes with the same three initial digits contains more than 20,000 people; and (2) the initial three digits of a zip code for all such geographic units containing 20,000 or fewer people is changed to 000; (C) All elements of dates (except year) for dates directly related to the individual, including birth date, admission date, discharge date, date of death; and all ages over 89 and all elements of dates (including year) indicative of such age, except that such ages and elements may be aggregated into a single category of age 90 or older; (D) Telephone numbers; (E) Fax numbers; (F) Electronic mail addresses: (G) Social security numbers; (H) Medical record numbers; (I) Health plan beneficiary numbers; (J) Account numbers; (K) Certificate/license numbers; (L) Vehicle identifiers and serial numbers, including license plate numbers; (M) Device identifiers and serial numbers; (N) Web Universal Resource Locators (URLs); (O) Internet Protocol (IP) address numbers; (P) Biometric identifiers, including finger and voice prints; (Q) Full face photographic images and any comparable images; and [®] any other unique identifying number, characteristic, or code, except as permitted for re-identification purposes provided certain conditions are met. In addition to the removal of the above-stated identifiers, the covered entity may not have actual knowledge that the remaining information could be used alone or **in combination with any other** information to identify an individual who is subject of the information. 45 C.F.R. § 164.514(b)

Ethnically, geographically, and linguistically identifiable populations present particular concerns with regard to privacy, stigmatization, and discrimination, since the ability to protect the privacy of these individuals or groups participating in the research is diminished. For example, members of an identifiable population may be stigmatized or discriminated against if research reveals that the group is at high risk of having a genetic variant associated with a particular disease. For some communities, close family relationships also may make it especially challenging to protect participants' privacy, even if research samples are de-identified.

https://www.genome.gov/about-genomics/policy-issues/Privacy

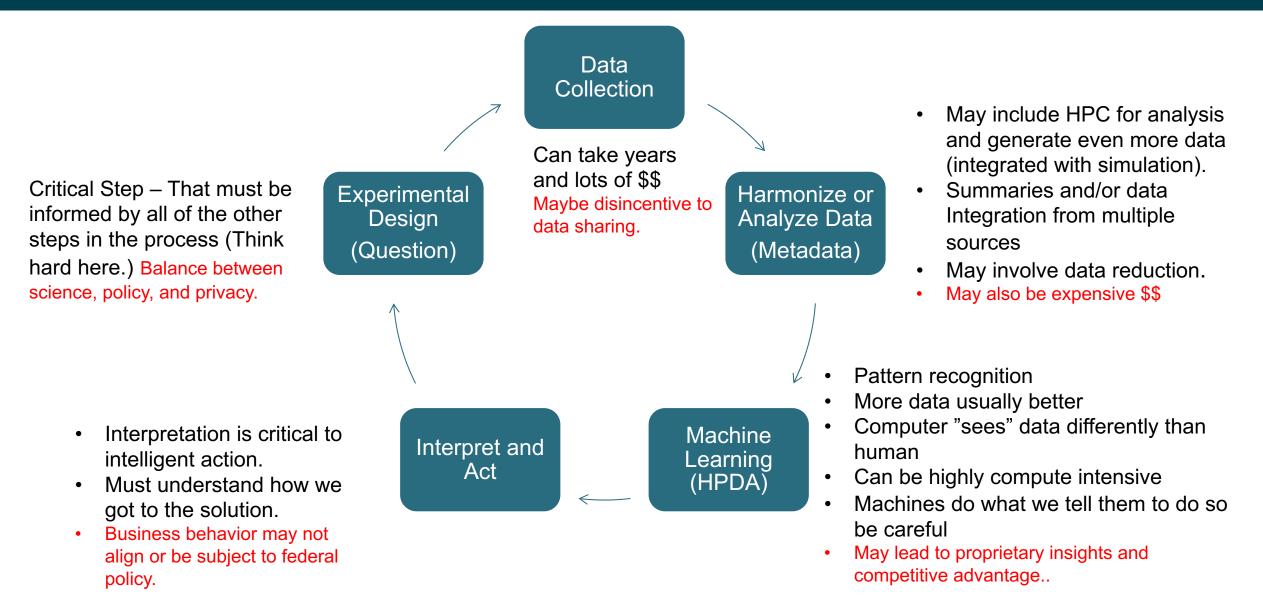
Data are ...

- Ubiquitous
- Cheap to generate
- Valuable to utilize
- Mobile
- "Big" and growing exponentially
- Often Aggregated/Integrated
- Mutable
- Potentially Beneficial (can power progress)
- Potentially Harmful ("weaponized")
- Protected (in some cases)
- In need of Interpretation.
- Not Generally Self-Annotating

*"ipsa scientia potestas est" "*knowledge itself is power" – Sir Francis Bacon Commodification = "and money"

tional Cancer Institut

17


- Within a <u>capitalist</u> economic system, Commodification is the transformation of <u>goods</u>, <u>services</u>, <u>ideas</u> and people into <u>commodities</u> or objects of trade. A commodity at its most basic, according to <u>Arjun Appadurai</u>, is "anything intended for exchange," or any object of <u>economic value</u>.^[1]
- Commodification is often criticised on the grounds that some things ought not to be treated as commodities—for example <u>water</u>, <u>education</u>, data, information, knowledge, human life, and animal life.
- The word *commodification*, which describes assignment of economic value to something not previously considered in economic terms
- Information Economy Impacts Data Sharing and Privacy
 - Maximizing profit in an information economy often conflicts with transparency, data sharing, and privacy.
 - Policy is keeping up with technological changes reactive, in general

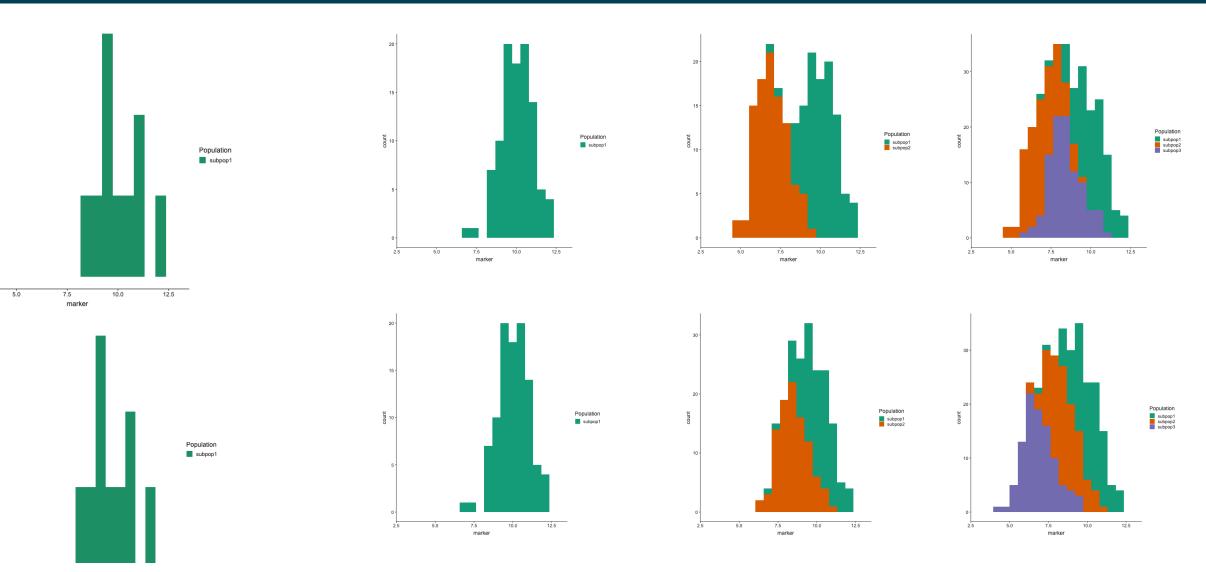
Technologies are ...

- Data Hungry
- Computationally Scalable
- Facilitating Large-Scale Aggregation/Integration of Data
- Changing Faster than Laws and Policy

Machine Learning is – ALL ABOUT DATA (And speeding up and automating analysis)

Frederick National

Laboratory


Data and Sampling Bias are Critical Issues Sources and Impact (some algorithms can magnify bias)

Frederick

National Laboratorv

- Male/Female
- Caucasian/non-Caucasian (minority groups, ethnicity, geographic)
- Human/non-Human (we can generally cure mice)
- Adult/Children
- Sequencing/Genomics (Panel, Exome, Whole Genome, RNA) Proteomics
- Imaging (yes/no, quantitative/qualitative), EHRs (controlled vocabulary)
- Socioeconomic Status (sensors, wearables, access to diagnostics and treatment, ...)
- Environment and Culture

Sampling (Bias) influences Machine Learning Especially if it's automated and not repeatedly assessed and questioned

Frederick

for Cancer Research sponsored by the National Cancer Institute

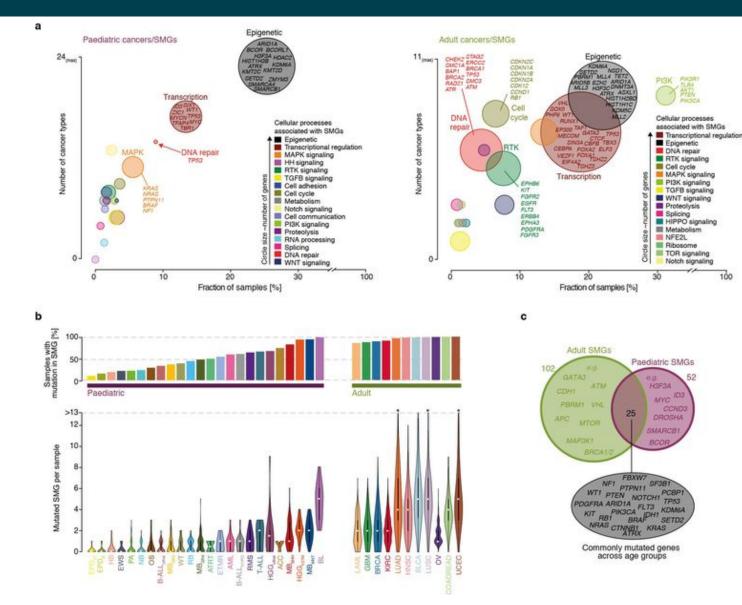
National Laboratory

2.5 5.0 7.5 10.0 marker

12.5

Adult Cancer is Different from Pediatric Cancers

Much of our current knowledge and treatments have targeted Adults


National Laboratory for Cancer Research

Frederick

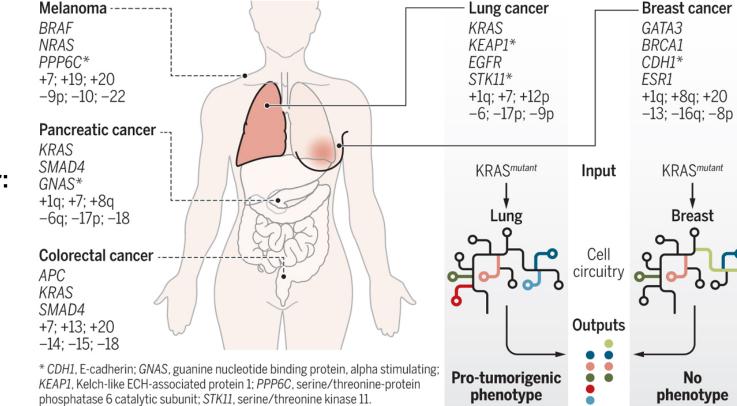
sponsored by the National Cancer Institute

The landscape of genomic alterations across childhood cancers <u>Susanne N. Gröbner</u> , <u>Barbara C. Worst</u> [...] <u>Stefan M. Pfister</u>

Nature **volume 555**, pag es 321–327 (15 March 2018)

Tissue-specific genetic alterations and differential responses

Frederick National Laboratory


sponsored by the National Cancer Institute

Science

MAAAS

Tissue-specific genetic alterations and differential responses

Different human cancers contain a subset of recurring cancer driver gene mutations and chromosome copy number alterations that are specific for, or enriched in, that tumor type. The underlying tissue-specific epigenetic architecture may differentially determine the responsiveness to oncogenic signals and thus the propensity to acquire alterations that lead to cancer.

Tissue-specificity in cancer: The rule, not the exception Kevin M. Haigis, Karen Cichowski, and Stephen J. Elledge

Science Volume 363(6432):1150-1151 March 15, 2019 Published by AAAS

Security and Privacy are ...

- Misunderstood by many (researchers, general public, ...)
- Risks vs. Benefits
- Often Assumed
- Becoming "commoditized" ("get what you pay for")
- Increasingly difficult
- Breaches can be expensive
- Informed by cultural norms
- Different to many people

Who controls your data? Who profits from your data?

Healthcare, generally, has not kept up with technology.

Your privacy and security settings made easy.

Google

Welcome, Elisa Beckett

 Welcome, Elisa Beckett

 Manage your privacy

6 Strengthen your security >

Google Account

Turn it on. Turn it off. You control what data gets saved.

Google

Google Account provides easy-to-use settings and tools to help you control how Google works for you. Another way we keep your data private, safe, and secure. g.co/privacy

- National Cancer Institute
- Scale of data production has grown dramatically; large scale data are generated, processed and analyzed at a significant cost.
- Open access allows published claims to be verified
- Large-scale data can be used to address scientific issues
 distinct from the original research problem
- Current state of IT allows data to be transferred, stored, analyzed and disseminated at a much larger scale
- Data sharing facilitates the development of novel research methods and tools

NIH Genomic Data Sharing (GDS) Policy: Overarching Principles

Frederick National Laboratory

- Data sharing promotes maximum public benefit from federally funded genomics research.
- Genomic data to be shared with timely data release through broadly accessible and open or, if more appropriate, controlled access data repositories
- Systems to ensure human subject protection and oversight of research conduct, data quality, data management, data sharing, and data use are critical to effective data sharing policies

- Large scale data, both human and non-human, are expected to be shared, irrespective of funding level or mechanism
 - Examples of large-scale data include: whole genome/exome sequencing, transcriptome, epigenome and single-nucleotide polymorphism array data
- Metadata and annotations necessary to interpret study and replicate results are to be shared
- Data is to be submitted to a NIH-designated repository
 - Examples: dbGAP, dbSNP, dbVar, SRA, GEO, GenBank, ClinVar, Genomic Data Commons (GDC), ICGC, etc.

Are your data accessible and in a format that can be readily shared upon request?

Contents of a manuscript must be available to readers, journals, institutions, if requested. (raw data, data-sets, reagents, etc)

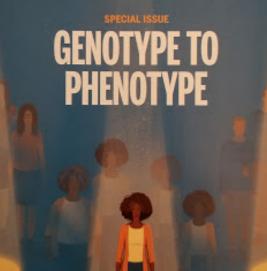
"May I have the data?"

Balancing Risks vs Benefits / Rewards

Integration of data is key to both

Predicting Social Security numbers from public data Alessandro Acquisti and Ralph Gross PNAS July 7, 2009 106 (27) 10975-10980; https://doi.org/10.1073/pnas.0904891106

Information about an individual's place and date of birth can be exploited to predict his or her Social Security number (SSN). Using only publicly available information, we observed a correlation between individuals' SSNs and their birth data and found that for younger cohorts the correlation allows statistical inference of private SSNs. The inferences are made possible by the public availability of the Social Security Administration's Death Master File and the widespread accessibility of personal information from multiple sources, such as data brokers or profiles on social networking sites. Our results highlight the **unexpected privacy consequences of the complex interactions among multiple data sources in modern information revelation in public forums**. Identifying Personal Genomes by Surname Inference


Melissa Gymrek, Amy L. McGuire, David Golam, Eran Halperin, Yaniv Erlich *Science* 18 Jan 2013: Vol. 339, Issue 6117, pp. 321-324 DOI: 10.1126/science.1229566

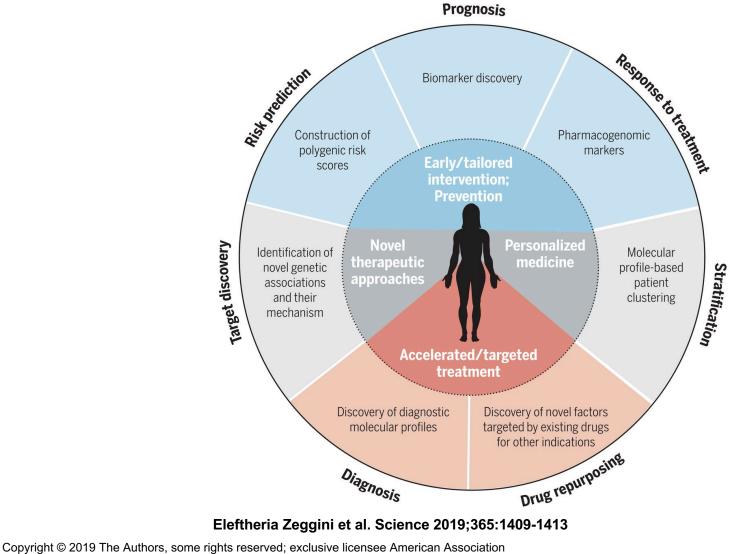
Sharing sequencing data sets without identifiers has become a common practice in genomics. Here, we report that surnames can be recovered from personal genomes by profiling short tandem repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases. We show that a combination of a surname with other types of metadata, such as age and state, can be used to triangulate the identity of the target. A key feature of this technique is that it **entirely relies on free, publicly accessible Internet resources**. We quantitatively analyze the probability of identification for U.S. males. We further demonstrate the feasibility of this technique by tracing back with high probability the identities of multiple participants in public sequencing projects.

Genome => Phenotype

A salmon scientist fights a colossal gold mine p. 1366 An ocean of opportunity for climate mitigation p. 1372 Large exoplanet, sma star pp. 1362 & 1441 Sispertember 2 clarcemag.org MAAAS

Examples of real (Left) and predicted (Right) faces.

Christoph Lippert et al. PNAS doi:10.1073/pnas.1711125114 2017


Significance

By associating deidentified genomic data with phenotypic measurements of the contributor, this work challenges current conceptions of genomic privacy. It has **significant ethical and legal implications on personal privacy, the adequacy of informed consent, the viability and value of deidentification of data,** the potential for police profiling, and more. We invite commentary and deliberation on the implications of these findings for research in genomics, investigatory practices, and the broader legal and ethical implications for society. Although some scholars and commentators have addressed the implications of DNA phenotyping, this work suggests that a deeper analysis is warranted.

The translational potential of complex disease genomics.

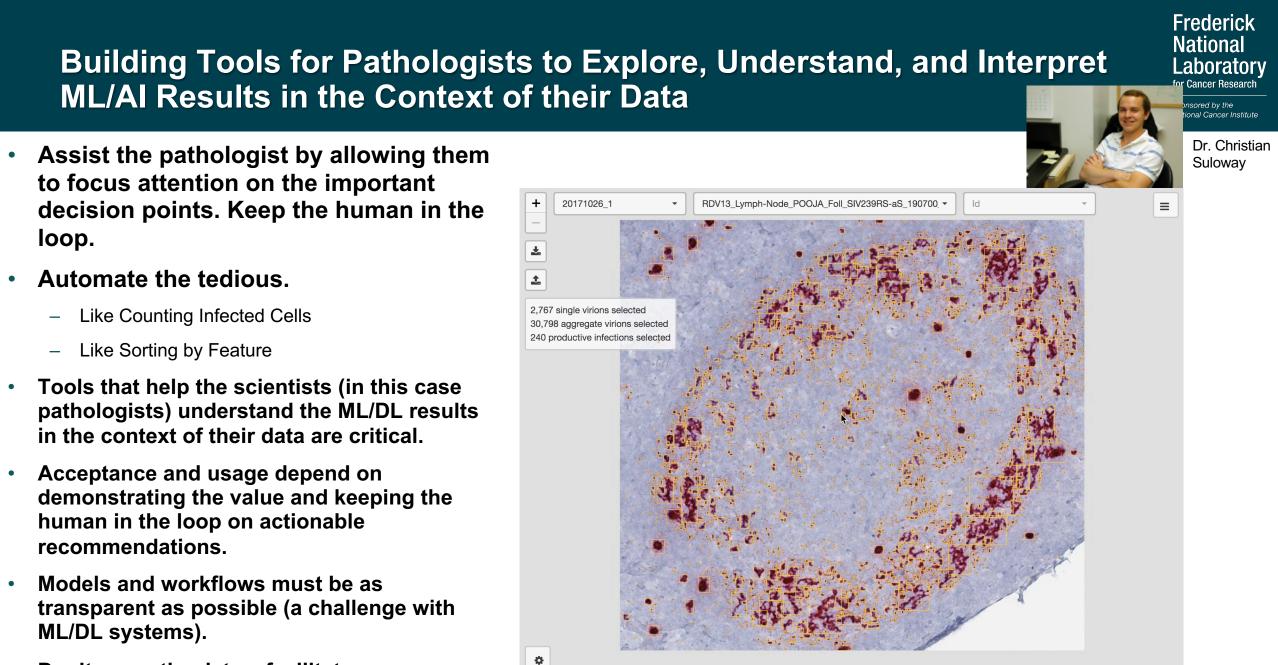
sponsored by the National Cancer Institute

for the Advancement of Science. No claim to original U.S. Government Works

Use Cases - Examples

Cancers / Rare Cancers Precision/Personalized Medicine (N of 1) Rare Diseases Potential of AI

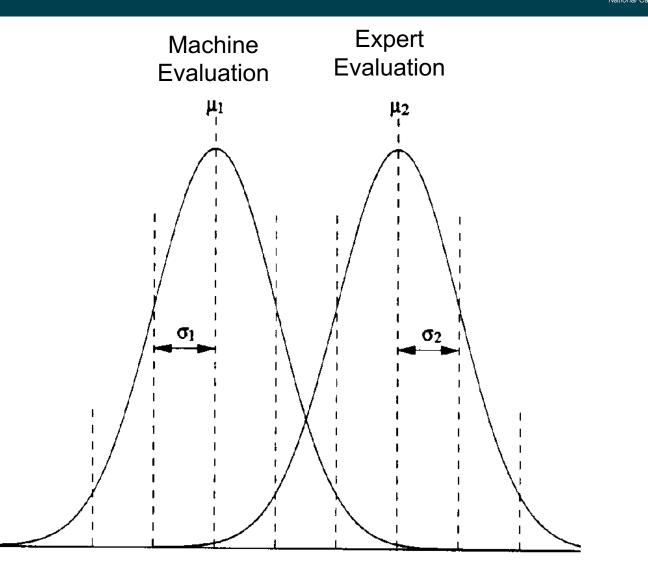
- National Center for Advancing Translational Science (NCATS/NIH)
 - Rare Disease In the United States, a rare disease is defined as a condition that affects fewer than 200,000 people. This definition was created by Congress in the <u>Orphan Drug Act of 1983</u>. In the European Union, a disease is defined as rare when it affects fewer than 1 in 2,000 people.
 - ~7000 Rare Diseases Defined (prevalence of risk often unknown)
 - Rare Diseases, by definition, have few data points (Need to aggregate/integrate)
 - Potentially Identifiable Population (often children and significant consequences)
 - Symptoms often fall on a Spectrum
 - Diseases often share phenotypes (and, presumably, genotypes)
 - Farber's Disease (Case 1) ~80+ reported cases worldwide
 - Proper and rapid diagnosis is currently an issue. Benefits to understanding disease at molecular level
 - Phenyketonuria (low or defective PAH gene -> decreased metabolism of phenylalanine)
 - Significant effects can be mitigated by early intervention and strict diet. Significant developmental issues otherwise.


Rare Cancers MyPART

sponsored by the National Cancer Institut

MyPART info

- MyPART is the My Pediatric and Adult Rare Tumor network. It is a group of scientists, patients, family members, advocates, and healthcare providers who want to help find treatments for rare cancers. We are working on childhood, teen, and young adult solid rare tumors that have no cures.
- ask patients, their family members, and healthcare providers about how the rare tumor affects patients' lives.
- collect samples like blood, saliva, and biopsy tissue from people with rare tumors to study how rare tumors grow and how we could treat them.
- share data from rare cancer samples with scientists around the world.
- hold workshops with patients, advocates, doctors, and scientists to talk about how to improve patients' lives and find new treatments.
- build new ways of testing new treatments.
- use what we learn to design new clinical trials for rare cancers.
- teach the public about how we are trying to find new treatments.
- share research results with individual patients.



Don't move the data – facilitate access.

RNAScope data visualization tool (beta) - Imaging and Visualization Group, ABCC

What is the "truth"? How can we tell? Or – How do we define?

- If we could evaluate/assess images/data using multiple human evaluators (Expert Evaluation) with different conditions and different machine learning models (Machine Evaluation), then we could compare the distributions and estimate the probability that they represent the same distributions.
- HPC/HPDA/Advanced Computing can enable this type of evaluation. – if we have the data

Frederick National

Laboratorv

SCIENCE FUTURE DATA DRIVING DISCOVERY

sponsored by the National Cancer Institute

Technology Enabling Science

